为了区分不同的数据类型,Labview为各种不同的数据类型设置了固定的颜色。随着所连接数据类型的不同,数据连线的颜色和线条也不相。一般而言,单个数据对应的数据线为最细的线。包含多个数据的数据线较粗,多维数据一般为多个线条组合成的数据线。
关键字:LabVIEW 数据线类型
引用地址:LabVIEW的数据线类型
表1列出了连接不同数据类型时的数据线线条和颜色。
表1数据及对应数据线类型
数组和簇这类由基本数据类型组成的数据,其线条和颜色都不固定:线条随着维数发生变化,颜色也和内部数据类型相对应。
上一篇:CRC校验C程序及用labview编写的CRC校验小程序
下一篇:labview中dll的调用(包括生成dll)
推荐阅读最新更新时间:2024-03-30 23:04
无线远程医疗监护系统的设计
摘要:介绍了一种基于GPRS技术的无线远程医疗监护系统。以SPCE061A为主控芯片,将数据采集模块和GPRS通信模块相结合,以无线的方式连接到Internet,由监护中心接收数据并保存到数据库中。运用LabVIEW工具进行监控中心服务器端主面板的设计与处理,实现对患者生理参数的远程监测、分析及异常情况的判断和报警。阐述了系统的总体结构,从硬件和软件两个方面说明了系统的设计及实现方法。系统具有结构简单、实时性强、传输数据量大,在自然灾害和战争中伤病员的现场抢救等方面,具有良好的应用前景。 远程医疗监护是利用远程通信技术和计算机技术实现远距离的疾病诊断、疾病治疗和健康护理等多种医学功能的一种医疗模式。它实时、连续、长时间地监测病人
[测试测量]
基于LabVIEW的心电信号采集与分析设计方案
生物医电信号,如心电信号、血压信号、脑电信号等等,都表征了一定的病理特征,以心电为例,通常以心电图来记录心脏产生的生物电流,临床医生可以利用心电图对患者的心脏状况进行评估,并做出进一步诊断。而对于一些家用或者医用仪器厂商来说,则需要开发特定的信号处理算法并部署到嵌入式处理器上,完成医电特征的提取。通常整套心电监测产品的研发过程,由心电数据采集、心电信号分析、人机显示、文件存储等几部分组成,通过NI提供的图形化系统设计平台,可以覆盖数据采集、信号读取、心电分析以及报表生成等一系列产品开发的流程,完成整套系统的开发,提高开发效率。而在整个开发过程中,信号分析部分往往是重点,也是各厂商的软件核心技术所在。本文将重点就心电采集与分析展
[工业控制]
如何在LabVIEW中制作自定义按钮控件
最近应客户的要求,用LabVIEW 编写一个用Pico数据采集卡进行数据采集的简单实例,用于验证Pico数据采集卡的性能。虽然Pico数据采集卡自带有二次开发demo,但是这些都是非常基础的,有些人机交互控件,控制的都是中间变量,例如,Pico采集卡用timebase变量来设置采样率,timebase为0时,表示采样率是1G/s,采样率Pico示波器识别的变量,但是这些却不是客户最终需要的变量),所以在demo中需要将这些转换关系处理好。首先,晒晒demo的整体面貌吧~ 图 1 虹科控制台 虽然只是一个简单的展示示例,但确是麻雀虽小,五脏俱全,从自定义控件制作,到界面整体风格,到API函数调用,中间变量转换,程序整体结
[测试测量]
基于LabVIEW的电能监测系统的设计研究
摘要:文中主要是将虚拟仪器技术作为主要研究对象,研究其在电能质量检测中的作用和方式,通过大量的实践,研制出了一套基于LabVIEW的电能监测系统,并且对其进行理论层面的剖析,研究各项电能质量相关指标是否符合设计要求,虚拟仪器中各个软件的程序编写也是主要研究内容,通过虚拟系统,实现了对电能质量各参数的检测,分析和记录数据等。最后还对基于此虚拟系统计算得出的数据进行相关误差分析,找出了其内在原因。 电能对于我们人类生活来说是一种宝贵的清洁能源,并且是可再生的,对电能的应用程度和效率是一个国家综合国力的必要体现,与国家的发展和繁荣息息相关。不仅如此,如何高效的利用电能这种资源来更好地满足国家的工业生产,社会和人民的日常生活关系着国家
[测试测量]
基于LabVIEW的地面伽玛能谱仪校准软件的设计
1.引言 地面伽玛能谱测量是利用便携式伽玛能谱仪直接在现场测定土壤、岩石中钾、铀、钍含量的一种核地球物理方法。在解决地球科学、环境科学等领域具有重要作用 .地面伽玛能谱仪的校准通常采用饱和模型法,目前,仪器校准系数的计算方法大多采用离线工计算,工作繁琐,易出错。为此,笔者针对地面伽玛能谱仪校准的校准系数、灵敏度系数、准确度的计算特点,运用LabVIEW设计出一款自动计算软件。 2.伽玛能谱仪的校准与检验 2.1 灵敏度系数及校准系数的计算 按照规范,伽玛能谱仪的校准方程式如下: 式中,Ik、Iu、Ith分别为谱仪在模型上实测的钾道、铀道和钍道扣除本底后的净计数率;QK、QU、QTh分别为模型中钾、铀、钍扣除本底的模型含量
[电源管理]
利用LabVIEW和CompactRIO设计一个用于研究飞虫的机器人设备
The Solution: 利用NI的LabVIEW软件和CompactRIO硬件制造一个快速、模块化、易于使用的仿生机器人平台,它涉及各种工业协议和实时闭环激励信号生成。
"借助于CompactRIO控制器和LabVIEW,我们对于飞虫如何实现出色的飞行控制进行了研究。"
蝇控机器人实验中的信息流示意图
苍蝇能够高速追逐,并精确地降落在盘子的边缘,这其中的机动性令人非常感兴趣。我们可以利用苍蝇作为模型系统研究神经信息处理、空气动力学和遗传学,此外,它们还可以快速、精确地使用它们的生物传感器、控制器和执行机构。人们对它们这样的能力很感兴趣但是难以进行研究。测量和激励装置必须具有高带宽、低延迟,并拥有灵活
[测试测量]
LABVIEW之文件I/O操作-----文本文件操作
一、文件I/O 概述: (1)文本文件 (2)电子表格文件 (3)二进制文件 (4)数据记录文件 (5)波形文件 二、文件操作 (1)打开/创建一个文件; (2)读写文件; (3)关闭文件; (4)文件的移动/重命名; (5)修改文件属性。 三、文本的读写 1.创建文件夹 如图:在D:\ 下面建立一个日期文名字的文件夹D:\2016-3-27 2.如下图:生成了一个新的文件进行了写文本操作,和关闭文件。 可以在路径中生成一个新的文本。 总结:第一个图可以用来创建新文件的,当文件夹存在会产生错误。 第二个图生成的路径下创建文件,会提示文件路径格式错误,错误原因可能是64位系统的原因。 综上:两个
[测试测量]
LabVIEW图像采集相关(一)
单次采集图像时,常用Snap.vi来编程。,如果我们连续采集的话,就会想到如下的模式。 snap 但是上图中的模式,采集图像比较慢,因为Snap.vi都包含了初始化和关闭等环节,最快的情况下也得需要120ms。NI为了解决这种问题,添加了Grab.vi来实现连续采集。程序框图如下: grab 这种情况下一帧数据大约需要40ms。 然而,在高速图像采集的应用中,我们会发现上一种模式也会存在一定的问题,即当图像采集速度非常高时,处理程序还来不及处理当前的图像,图像缓冲区里面的数据已经被新的图像数据所覆盖了。 为了解决采集缓冲区不足的问题,我们可以增加图像采集缓冲区。 NI-IMAQ提供了两种多缓冲区的方式
[测试测量]