一、电平刻度的转换和阻抗匹配问题
通常,频谱仪的显示刻度单位是dBm,而在场强测量和有关电波传播问题讨论中,习惯采用dBμv/m为单位,因此首先就有一个单位转换问题。实际上场强测量就是标准天线端感应电压的测量,因此只要将频谱仪的读数换算成电压单位,加上天线的天线系数即可求得待测场强。
频谱仪的单位换算系数随其输入阻抗的不同而不同,对于50Ω系统,
VdBuV=PdBm+107dB
而对于75Ω系统,则
VdBuV=PdBm+108.8dB
现代频谱仪多采用微机处理,显示刻度可以自动转换。在实际测量中要特别注意天线阻抗与测试系统的匹配问题,避免产生失配误差。由于频谱仪在使用中是进行宽带扫描,所以所用天线要求也都是宽带天线,而宽带天线的VSWR一般都较大,如果与频谱仪联接的不是匹配天线,则要对所用天线的天线系数重新校对。
在实际测量中,输入衰减器不宜放在0dB的位置,如果衰减器置0,输入信号直接接到混频器上,则阻抗特性变差,造成较大的失配误差。
二、防止频谱分析仪过载
一般测试接收机的输入端都有带有调谐式高放电路,以抑制带外信号,提高灵敏度。而频谱分析仪由于其宽带连续快速扫描的特性,输入端一般都直接接到第一混频器上。当信号电平较高时,混频器工作在非线性变频状态,将产生高阶互调和混频增益压缩,而且过高的电平(一般大于5dBm)将烧坏混频器,故在使用中要合理地选择射频衰减器以确保线性工作状态。
为使混频器进行线性变频,中频放大器进行线性放大,使示波屏上出现的假响应电平缩至最小,这就要求加在混频器上的输入信号功率越小越好;而为了扩大测量电平的动态范围,则要求输入功率越大越好。为此对输入信号电平的选择有如下三个规定:
(1)最佳输入信号电平
在频谱仪输入混频器上输入信号时,使所产生的失真电平小于某个规定电平时的输入信号电平叫最佳输入电平。它随混频器的构造不同而有所不同,通常频谱仪的最佳输入电平是-30dBm。用这样的电平输入时,规定频谱仪产生的失真电平和假响应电平小于-90dBm,即在-30dBm到-90dBm间出现的信号是真正的信号,这时,显示器的动态范围有60dB。
(2)线性输入信号电平
使输入混频器的特性保持线性的最大输入信号电平叫线性输入电平。所谓“线性”,是指允许输入混频器有1dB的增益压缩。增益压缩1dB,约产生12.2%的误差。当加到混频器的信号电平在线性输入电平范围内时,则增益压压缩小于1dB,这并不意味着在频谱仪显示器上不同生失真响应和假响应。只有当输入到混频器的信号功率等于最佳输入电平时,在示波屏上才不出现假响应。通常,频谱仪的线性输入电平是-5dBm到-10dBm,视输入混频器的特性而定。
(3)最大输入电平
频谱仪输入回的烧毁电平叫频谱仪的最大输入电平。它由输入衰减器和混频器的特性决定。输入混频器的烧毁电平的典型值是+10dBm,输入衰减器的烧毁电平是+30dBm。
在实际测量中,为使测量不失真,或使假响应电平减至最小,应经常使用最佳输入电平。就输入端是单个大信号而言。采用最佳输入电平,将会得到较满意的测量结果。但当输入端存在多个高电平信号时,即使这些信号可能在频谱仪的工作频带外,终因输入端没有选择性,这些信号功率的迭加很容易使混频器过载产生高阶交互调失真,从而产生假响应,因此有必要对所测信号以外的信号功率加以衰减,最好的办法是加一个跟踪滤波器,即预选器,如美国HP公司和西德R/S公司都有为其频谱仪配套的预选器。
有些频谱分析仪没有配套的预选器,但可根据测量频段加固定的带通滤波器。此时,用频谱分析仪和跟踪信号发生器对通带内波动、插入损耗仔细进行测量并一一记录下来,在测量场强时计入到天线校正系数去。如果连带通滤波器也没有,那么可按照所测频段配置合适的高通滤波器。实践证明,强电台及电磁干扰大多集中在中、短波及调频波段、VHF低端,在采用高通滤波器后,可把被测频段以下的信号衰减40dB以上,这样可大大减少互调、交调失真。
检验混频器是否工作在最佳状态,可以采用射频衰减器增加10dB,显示减少10dB的方法验证。通常,-30~-35dBm为混频器的最佳工作状态,即频谱仪的最佳输入电平为-30~-35dBm。最佳输入电平的择定为以后进一步的精确测量打下了良好基础。
三、选择合适的中频带宽
频谱仪的中频带宽(又称分辨率带宽)很多,从1MHz到1kHz以下约有10档左右。但由于频谱仪的连续扫描特性,它的滤波器是高斯型的矩形系数较大,一般60dB:3dB带宽为10:1。而测试接收机的中频滤波器矩形系数较小,一般60dB:6dB带宽为2:1(一般测试接收机为双调谐回路,且B3=0.8B6)。频谱仪的噪声系数较大,典型值为19dB,因此在频带宽相同的情况下,频谱仪的噪声电平比测试接收机高。
了解这些不同后,就可以根据实测情况及所测信号的特点,选择合适的中频带宽。如果要测量间隔25KHz的两相邻信号,若它们的电平相差不大,则用10KHz的中频带宽就可以区分两信号。如果电平相差较大,则必须用3kHz或1kHz的中频带宽才能区分两信号。在选择中频带宽时,还应注意扫描时间,太快会使滤波器来不及响应,导致测量不准。有些频谱仪有自动调节功能,特别是现代较先进的它可将扫描时间自动调节到与扫描频宽、中频带宽相适应。若是手动调节的,应注意一旦中频带宽改变,扫描时间也要相应地变化,以保证准确测量。
如果要测量较弱信号,就要减小中频带宽,使频谱仪的噪声电平低于被测信号。频谱仪一般给出最小中频带宽以下的平均噪声电平,中档频谱仪的典型值为-115dBm。为保证测量结果有效,应使信噪比优于6dB,故它可测量的最小电平为-109dBm即-2dBμV。实际上可测的最小电平还受到频谱仪杂散响应指标的影响,而且当被测信号小于1μV时,通过机壳、电源线等引入干扰会使测量结果不可靠。
四、怎样保证测量精度
测试接收机都装有标准脉冲振荡器,以便在测量状态,如频率、衰减器、中频带宽改变时随时可进行校准。其测量精度主要由标准振荡器的准确度及输入失配误差来决定,一般为±2dB。
频谱仪系采用固定频率的标准信号进行校准,当测量频率不同时就会产生误差。同时,射频衰减器参考电平、中频带宽、显示刻度等的改变都会产生误差。对于现代频谱仪这些误差一般为:
校准信号绝对误差 | ±0.3dB |
频率响应(包括输入失配) | ±0.5~2dB |
射频衰减器改变 | 1~2dB |
参考电平改变 | 0.5dB |
中频带宽改变 | 0.5~1dB |
显示刻度改变 | 1dB |
CRT显示非线性误差 | 1~2dB |
粗看起来,这些误差相加超过4.5dB,但实际上与测量方法有很大关系。测量时,如能保持与校准时的仪器设置状态一样,就可使误差减至最小。一般是采用中频替代法,即在不改变中频带宽及显示刻度的情况下,通过改变参考电平。使校准信号电平与被测信号电平等于相应的参考电平时,则被测信号电平值等于校准信号电平值加上参考电平的改变量。值得注意的是,测量时保持信噪比大于12dB,这种测量的误差仅取决于整个误差的前四项可达到±2dB。
当然,也可用一台校准信号发生器的相同频率来替代被测信号进行标定,那样测出的精度会更高。
五、对各种工业干扰场强的测量
目前频谱分析仪所显示的是被测信号的瞬时峰值,而国家标准和国际上对工业干扰推荐使用准峰值测量,准峰值检波器可以模拟人耳对各种工业脉冲干扰的主观特性,具有规定的充放电时间常数。国家标准规定准峰值检波器的充、放电时间常数是:在150KHz~30MHz,为1ms和160ms;在30-1000MHz则是1ms和550ms。峰值检波器的时间常数没有明确的规定,其充电时间常数又远远小于准峰值检波器,一般充电时间常数在微秒级,而放电时间常数则在毫秒级,甚至秒级。严格讲来,按照CISPR对准峰值测量的规定,频谱分析仪不完全适合准峰值测量的规定,频谱分析仪不完全适合准峰值测量,但为了扩展应用范围,美国HP公司、西德R/S公司和日本武田理研公司等均在其生产的频谱仪上增加了CISPR测量(准峰值测量)一档,作为选件配置(定货时要说明)。使用时应注意,按照准峰值时间常数规定,频谱仪的扫描速度要慢,一般应大于3~10s/MHz,或者手动扫描。显然如果要进行宽频率范围或全频段搜索扫描测量,这样慢的扫速是无法令人接受的。但是加了CISPR档的频谱仪大多具有微处理器以及自动测试功能,所以只要在测量方法上稍加改进便可解决准峰值充、放电时间常数带来的测量矛盾。此方法是先用峰值档快速全频段扫描,找出干扰最大的几个频率点,而后用准峰值在这几个频点附近慢慢地扫描,以判定是否合格。这些操作一般均可用自动测试软件完成,也可以手动完成。
此外,增加了CISPR档的频谱仪多半属于台式仪器,体积和重量都较大,仅适合于试验室或固定台站使用,不适于野外移动作业。HP公司虽然推出一些便携式频谱仪,但不具备准峰值测量功能,对工业干扰场强的监测也不适宜。倒是日本武田理研公司在八十年代初推出一种中档、便携式频谱仪,TR-4132(50Ω系统)/TR-4132N(75Ω系统),非常适合野外移或作业,其CISPR档为标准配置,即可以进行一般的信号场强的测量。这种仪器最小分辨率带宽不很高,仅为300HZ, 对一般无线电监测业务和工业干扰测量基本够用。它的优点是,可以在交流、直流和汽车供电的情况下工作,显示直接按dBμV刻度。如果选择配套的天线进行测量,则天线校正系数自动加入最终结果;还可以选购波形存储器,将被测信号频谱记录下来,供测试人员分析、拍照,或者通过XY记录仪打印出来;也可以选加GP-IB附件和微机组成的自动、测量系统。该仪器仅主机系统报价就150万日元,再加上附件、天线等报价也约150万日元,如果改用国产天线,则可以大大节省经费开支。
上一篇:为DWDM测试选择最佳光谱分析仪
下一篇:数字扫频式频率特性测试仪的性质
推荐阅读最新更新时间:2024-03-30 23:10