数字示波器具有很多测量参数,如上升时间、下降时间、峰峰值、幅值等。每种参数的含义在示波器的操作手册上一般都有说明。但是,如果深究每个参数底层算法的源头是什么,答案其实并不简单。如果能深刻理解示波器的基本算法,这会有助于我们理解使用示波器过程中遇到的诸如示波器测量频率为什么测不准?示波器测量不规则的信号测量上升时间为什么跳变范围很大?为什么光标测量结果和参数测量结果差别很大?等等一些问题。
●确定高电平和低电平是示波器垂直量测量的第一算法
峰-峰值表示所有采样样本中的最大样本值减去最小样本值,这好理解,在示波器算法中也好实现;而幅值表示被测信号“高电平”减去“低电平”。高电平和低电平分别在哪里?这就需要定义算法。这个算法的确定将不只是直接影响到“幅值”这个参数值,还将影响到绝大多数水平轴的参数值,如上升时间、下降时间、宽度、周期等,因为水平轴的参数要依赖于垂直轴的参数。
不同示波器厂商给出的“高电平”和“低电平”算法可能不尽相同,但一般会采用公认的IEEE定义的算法,如下图所示。
首先对图示中“LEFT CURSOR”(左光标)和“RIGHT CURSOR”(右光标)时间范围内的波形数据样本向垂直方向做“轨迹直方图”,从图中看上去,轨迹直方图的垂直方向和原始波形的各采样点在垂直方向的位置一一对应,水平方向则表示在各位置上采集到的数据样本点的个数。图例中有两个位置的数据样本出现的概率最高,这两个位置就分别被确定为“高电平(图示中表示top的位置)”和“低电平(图示中表示base的位置)”。
在示波器算法中,一般默认是根据屏幕最左边到最右边的全部波形数据来确定“高电平”和“低电平”,因此,示波器每捕获一次,仅能得到一个“高电平”和一个“低电平”的参数值。
在测量正弦波时,在采样率足够的情况下,示波器上捕获尽可能多的波形,测量得到的高电平和低电平更稳定、更准确,相应由之影响的水平轴参数上升时间、下降时间、周期、频率等也就更准确。对于正弦波测量,还可利用正弦插值或等效采样模式来提高待分析的样本数,测量得到的结果可能也会更准确。
在测量一个脉冲方波和测量多个脉冲方波得到的“高电平”和“低电平”的结果可能是不一样的,因为统计的样本数不一样,获得的“轨迹直方图”就会有些差异。如果信号上有一点点的过冲或下冲就可能影响到直方图分布的最大概率状态的确定,那么很多参数测量的结果都会受到影响。
●确定波形中任意一电压阈值和波形交叉点对应的时间轴的位置是示波器水平量测量的第一算法
水平方向上常见的测量参数如上升时间定义为幅值的10%-90%。在具体算法上,就是先根据上述的垂直量第一算法,先确定高电平和低电平从而得到幅值,再由幅值的10%得到对应的电压阈值和幅值的90%得到另外一个电压阈值,计算两个电压阈值和波形交叉点对应的水平位置之间的时间差就是上升时间。
怎么确定某个电压阈值和波形交叉位置处对应的时间轴的位置?一种比较简单的算法是,在电压阈值处划一条线,以这条线和波形相交处最接近的那个采样点对应的时刻作为时间轴的位置。但是,这种算法带来的误差可能会很大,特别是在上升沿一般只包括了几个数据样本点,采样率不是特别高的情况下。
另外一种算法如下图所示,在电压阈值和波形交叉处相邻的两个采样点之间进行立方插值,然后连接最接近交叉点的上、下两个插值点或采样点,根据这两个确定的点可以获得y=ax+b这个二元一次方程的a和b,然后再根据交叉点已知的电压阈值获得x,即获得了水平轴对应的位置。这种看起来比较复杂的算法误差显然会小于前一种,但仍然会存在误差,误差的大小和采样率大小及示波器本身的时基稳定性有关。
电压阈值是由幅值决定的,譬如周期表示上升沿50%到相邻上升沿50%之间的时间间隔,上升沿的50%这个电压阈值就是由幅值得来的。因此,垂直量的算法会对水平量的参数结果产生影响。
关键字:示波器 测量参数
引用地址:
示波器那些事儿--之测量参数
推荐阅读最新更新时间:2024-03-30 23:13
模拟示波器和数字示波器的区别
摘要:在19世纪的欧洲,第一台火车曾被马车远远甩在身后。当时钟指向了21世纪,高铁时速已经突破400公里,当年的那些马儿现在只能赛马场和动物园见一见了。生活在摩尔定律面前让以年为周期不断被引爆,任何鼎盛在时代大潮面前终究只是一座小岛。昨天还是欲求千金买马骨,今天就已门前冷落车马稀。模拟示波器就像是当年的马车,也正在渐渐地淡出工程师的视野,在能够预见的某天,他终将会彻彻底底的离开我们,成为测量仪器史书上即将翻过去的一页。 1、曾经的一代枭雄 最早的模拟示波器出现于20世纪初期,大概只有几MHz的带宽。也就是我们早些年见到的那种CRT显示屏的示波器。原理比较简单,在高中物理中已经有讲过:模拟示波器内部会产生周期性的锯齿波信号来控制
[模拟电子]
泰克示波器MDO3000的101种用法
泰克示波器MDO3000覆盖了大多数日常测试需求,同时融合下述仪器的功能:行业领先的示波器频谱分析仪任意波形/函数发生器逻辑分析仪协议分析仪数字电压表和频率计数器通过融合示波器和频谱分析仪的功能,混合域示波器可以使用一台仪器,同时在时域和频域中工作。毫无疑问,一旦到位,您可以通过各种方式使用MDO3000,它就像一个百变女郎,满足您不同的测试要求。下面列出了您可以考虑完成的101项任务: 1.检查开机时间 2.解码SPI业务,查看信号质量 3.查看开机期间的时钟及第一次I2C业务 4.检查并行总线定时 5.测量相邻引脚上的串扰 6.测量I2C和USB2.0总线数据之间的定时 7.触发FPGA上的欠幅脉冲 8.触发建立时间/保持
[测试测量]
一种新颖的简易多通道虚拟示波器系统电路设计
本文通过LabVIEW虚拟实验软件平台设计了一种利用ATmega16单片机进行数据采集,通过RS232串行通信将数据传送给PC的简易虚拟示波器。用户可以在开发平台上对数据采集参数进行设置和调整以及对波形数据存储。系统的创新点是摆脱了传统开发平台的限制,具有多通道、方便、灵活等特点,在数据采集、传感器监测等领域有重要应用。虚拟仪器是基于PC技术发展起来的,所以完全“继承”了以现成即用的PC技术为主导的最新商业技术的优点,包括功能超卓的处理器和文件I/O,使在数据导入磁盘的同时就能实时地进行复杂的分析。为了实时、准确地测量输入波形的参数,本文采用自带8路10位ADC的单片机ATmega16,结合简单的外围电路,即可将输入波形实时传
[电源管理]
SIGLENT数字示波器新增3个实用功能
示波器是人们设计、制造或修理电子设备不可或缺的工具,被比喻成工程师的“眼睛”。但是大部分人对示波器的印象还仅仅停留在水平调节,垂直调节,触发,光标和测量这些常用功能上。其实示波器为了满足各种各样的测试测量需求和简化测试测量过程提高工作效率,添加了一些比较实用的功能。下面我们就鼎阳数字示波器来简单介绍一下。 Pass/Fail功能 通过制定测试规则,判断输入信号是否在创建的规则范围内,来检测信号的变化情况。可用于检测生产过程中的产品是否合格,检测研发测试过程中的信号是否在误差允许范围内。当示波器缺少高级触发功能时,也可使用此功能捕获一些异常信号。创建测试规则: 统计通过和失败次数,并捕获到不符合规则的异常信号:
[测试测量]
数字电子示波器的电路的应用和设计方案
电子示波器是实验室、工厂和现场的工程人员广泛使用的仪器,事实上电子示波器也是通过电子测试测量仪器类中,销量最大和销售金额最高的产品。在30年代末至40年代初,受电视广播和雷达测距迅速发展的市场驱动,模拟电子示波器基本定型,划分为垂直放大、横向扫描、触发同步和示波管(CRT)显示的四大部分。模拟电子示波器的实时带宽在70年代达到1000MHz的高峰,随着数字技术和集成电路的出现,以真空管和宽带放大电路为主导的模拟电子示波器,从80年代开始逐步由数字电子示波器所取代。随着信息技术和数字通信市场的爆炸性发展,在90年代后斯数字电子示波器的实时带宽已超过1GHz。进入二十一世纪2010年代,数字电子示波器亦获得飞跃,实时带宽超过10GHz
[测试测量]
示波器原理和电子束实验装置实验目的
示波器原理和电子束实验装置是在学生示波器基础上研制的一种新型物理仪器,它自带低频信号发生器,可研究掌握示波器原理及各种不同类型信号的测量方法;研究和验证电子束在不同的电场和磁场条件下的运动规律,并可精确测定电子荷质比,是集示波器,低频信号发生器,电子束实验仪于一体的综合性实验仪器;具有设计新颖,结构合理,操作简便等特点,是各大中专院校物理教学、劳技课教学及职工教学课程中理想的学生分组实验仪器。 实验目的: *了解示波管的构造和各电极的作用。 *了解示波器的工作原理,掌握示波器的操作方法; *了解示波器中的信号衰减,扫描信号发生器、垂直放大器、水平放大器等工作原理; *掌握使用示波器测量各种不同类型信号波形物理参数的方法 *掌握
[测试测量]
双线同步示波器的业余制作
本文介绍的一款简单易制的示波器,是基于旧式的电子管双线示波器SBR-1制作,Y轴频率响应为O—1MHz,灵敏度为2mV/cm—20V/cm(按1-2-5进制分档),输入电阻1MΩ,×轴扫速为l u s/cm~5s/cm(按1—2-5进制分档)。读者如果有其它型号的旧式示波器零件,也可使用本电路作为参考。 电路原理 本示波器的电路分为如下几个部分: 1、垂直通道(Y轴),见图1; 2、水平通道(X轴)与时基电路,见图2、3; 3、高压电源和示波管电路,见图5; 4、中低压电源,见图4。 下面逐一介绍各部分电路原理。 垂直通道由输入衰减器、前置放大器和输出放大器组
[测试测量]
基于单片机的通用示波器存储功能扩展设计
1 引言 目前,通用二踪示波器如 HH4310A/HH4311A 、 RS8 等均无存储功能,在学生实验中能满足信号测量的要求,但若用于测量一些非周期单脉冲信号,由于信号的突发性,这些通用的示波器往往不能对信号的波形、幅值、脉宽进行仔细的观测。其在通用示波器中嵌入存储功能,能极大地扩展应用范围,具有较高的实用价值。笔者介绍一种利用 SPCE061A 型 16 位单片机在 HH4310A/HH4311A 型通用示波器中嵌入存储功能的原理及实验结果。 2 通用示波器的基本工作原理 通用示波器的频率繁多,电路各不相同,但总的来说,可以归纳为 3 个主要组成部分:垂直系统(主要实现 Y 输入信号的放大
[应用]