超声波硬度计的测试原理

发布者:脑洞飞扬最新更新时间:2016-04-13 来源: eefocus关键字:超声波  硬度计  测试原理 手机看文章 扫描二维码
随时随地手机看文章
  超声波硬度计的测试原理是什么?超声波硬度计是一种常用的硬度测量仪器,现在硬度测量已经广泛的应用于工业生产、科学实验、国防建设行业中。超声波硬度计具有高精度、高效率、结构先进、实用方便等多种的优点。下面小编就来为大家具体介绍一下超声波硬度计的测试原理是什么吧,希望可以帮助到大家。

  近十年来,硬度的测试多基于压痕法,随着计算机的广泛应用,超声、磁等无损伤硬度测试方法已有了重大突破。目前,硬度测试可采用的方法很多,如直流矫顽力法、光栅法、磁栅法、巴克豪森发射法、超声传感器法等,其中光栅、磁栅法虽精度很高,但属于压痕法,对被测物表面损伤较大,成本也较高;直流矫顽力法需预先对被测物的材料、形状、尺寸和工作条件进行破坏性检验,以作出标准测量曲线,故只适用于大批同一零件的检验;巴克豪森发射法虽在无损检测方面潜力很大,但测试设备很复杂,在通用的测试中不易采用;超声传感器法是使传感器测头与被测件接触,在均匀的接触压力下,使传感器的谐振频率随压痕深度(即硬度)而改变,通过计量该频率的变化达到测量硬度的目的,该方法对被测件的损伤极小,为无损伤测量,同时采用机电转换的信号拾取方式,与上述其它方法相比具有很大的优越性。基于超声计量原理,研制出精度高、功能强的智能型数显超声硬度计。

  1 超声硬度测试方法基本原理

  1.1 传感器工作原理

  传感器由压电晶体、励磁线圈、传感器杆、金刚石锥体等组成,传感器杆一端与一个大质量刚体固定在一起,另一端镶有金刚石锥体压头。当压头与被测件不接触时(如图1a所示),处于自由振动状态,此时,传感器杆的固定端将是振动的波节点,压头端由于振幅最大而成为振动的波腹点,杆的长度等于振动波长的1/4,此时的频率就是传感器杆的自由振荡频率。当传感器杆的压头端完全被试件夹紧时(如图1c理想情况下传感器杆的两端都将成为振动的波节点,杆的长度等于振动波长的1/2,此时的频率是压头端处于自由状态时的两倍。当压头压到被测件上时,则处于上述两种情况之间(如图1b).在固定负荷作用下,对于弹性模量相同的试件,硬度愈低,压痕愈深,振动的波长越小,杆的振动频率就越高。通过测量传感器杆振动频率的变化即可确定被测件的硬度。  需要指出的是,试件的弹性模量不同,也会影响传感器杆的振动状态,因此被测试块的弹性模量应与校准用的标准试块一致,以保证测试精度。),

  1.2测头的激励振荡源及输出信号处理

  这是一个标准的正反馈振荡器,BG2输出的振荡电流流过测头中的线圈,产生的交变磁场推动传感器杆振动,杆的振动又作用在压电陶瓷上,由压电陶瓷输出一个经过“放大”的电信号(正弦信号),再正反馈到BG1,形成自激振荡。电路起振后,振荡频率主要由传感器中的杆负荷及弹簧弹性系数决定。

  测头的输出信号是峰值约为0.4V的近似正弦波信号,经放大整形后送入89C的T0端计数,以计算该频率,数据处理后即可得到被测硬度值。51

  2 系统硬件设计

  微处理器采用内含4k字节快擦写PEROM的8位单片机89C自管理系统由可编程接口芯片8279控制,键盘除设有“测量”、“存储”、“平均”、“打印”、“布氏”、“洛氏”、“韦氏”等功能外,还增加了“+0.1”、“-0.1”、“+1”、“-1”等补偿校正键,以便在测试前用标准试块进行校准,消除测头参数差异及环境温度变化造成的误差,提高测试精度。测量结果还可根据需要打印输出。51,

  3 系统软件设计

  软件设计的主导思想是:采用模块化结构,大量调用子程序及中断服务程序,尽量减少主程序内容,使条理清晰,调试方便,并充分利用布尔处理功能,使程序运转灵活方便。

  上电后首先进行自检,一切正常时,显示器显示“0”,初始化为洛氏硬度。软件设计的一个重要环节是检测频率信号的稳定性,因为如果被测试块表面光洁度不够或操作者操作不当等都可能造成频率抖动,这样的频率应由计算机给予“剔除”,否则将造成很大误差。另外,频率从自由振荡到有荷振荡需要一段时间,这期间应不予计数,数据处理在定时器溢出中断服务程序中完成,根据测得的频率得到相应的硬度值,再按要求查表转换成相应的布氏、洛氏、韦氏硬度标度后送显示器显示。

  4提高测量精度的智能化措施

  4.1超声硬度曲线的分段直线拟合

  试件的硬度与超声传感器的输出频率成近似线性的反比例关系(如图5a所示),为了精确逼(近函数曲线和便于计算机处理,采用“分段直线拟合”法,通过计算机利用高级语言对若干对原始试验数据用最小二乘法处理,找出最佳分割点f1,f2,并归纳出各段的线性函数:yi=aix+bi如图5b所示)。其中测试时,微处理器将所测得的频率与预先设置好的分割点f1和f2比较,测出该瞬时频率所在的区域,然后将该频率值代入该段函数关系式,即可得到硬度值。

  4.2面向标准试块的校准

  超声传感器测头由于制造工艺等方面的因素,相互间存在一定的差异,而用软件设计的逼近曲线则是固定的,这势必会造成误差。系统设计时对这一问题作了必要的考虑,即可以通过键盘上的“+0.1”、“-0.1”、“+1”、“-1”补偿修正键输入校准值,微处理器对原始逼近曲线进行修正,以实现新的最佳逼近(如图5c所示)。原理如下:  假定各段直线误差为 , 2, 3,曲线修正过程为:通过键盘将各段截距加上 , 2,或 ,微处理器按下式找出新的分割点f311'1,f'2。其中,b'2、b'3为校准后的截距值,f'2为修正后的分割点,f'1的寻找基于同一原理。每按一次校准键,微处理器执行一次修正程序,每次都找出一组新的y'1,y'2,y'3和f'1,f'2.当然,如果分割点取3个以上精度会更高,但软件的复杂程度也随之提高。实践证明我们采用的这种处理方法,其精度足以满足工程上的一般需要。

  这种校准方法还有效地解决了测头在很宽温度范围内工作时本身的频率“偏移”问题,因此,每次正式测量之前,只要用标准试块进行校准,就可以获得很高的精度。

  5 结论

  采用超声传感器研制的智能硬度计具有以下特点:

  (1)以单片微处理器89C为核心,实现了软硬件统一优化设计,充分发挥软件资源对测试信号进行分析、加工,自动检测系统各模块功能,自动剔除错误信息和坏值,保证了每次测量结果的正确性。

  (2)实现了硬件软化,增加了许多新功能,如多点测量平均,结果打印,布、洛、韦转换等。尤其是非线性直线拟合及面向标准试块校准等智能技术的应用,使系统精度明显提高,分辨率为0.1HRC,实测精度达0.5HRC.

  (3)集成度高,结构紧凑,硬软件都采取必要的抗干扰措施,能在较恶劣的环境下可靠工作。该硬度计交直流两用,以适合野外作业。

关键字:超声波  硬度计  测试原理 引用地址:超声波硬度计的测试原理

上一篇:雷达料位计在水泥厂中的应用
下一篇:铠装热电偶与其它热电偶的不同之处

推荐阅读最新更新时间:2024-03-30 23:13

基于AT89C2051倒车防撞超声波报警系统的设计方案
  本方案所设计的倒车防撞报警系统采用软、硬件结合的方法,具有模块化和多用化的特点。设计中介绍了超声波检测的发展及基本原理,阐述了超声波传感器的原理及特性。对于系统的一些主要参数进行了讨论,并且在介绍超声波测距系统功能的基础上,提出了系统设计的总体构成,本方案的提出将对汽车主动防撞乃至自动驾驶产生,给驾驶者提供一个倒车的操作指令。   1.引言   众所周知,要检测两头之间是否有障碍物,一般的做法是一头发射一个信号,在接收处判断是否有信号接收到,若有信号接收到,说明中间没有障碍物;若接收不到,则说明有障碍物。然而在汽车倒车防撞报警系统的设计中,由于汽车是一个移动的物体,不可能在某一具体的位置上安装接收或发射装置,这就决定了系统
[单片机]
基于AT89C2051倒车防撞<font color='red'>超声波</font>报警系统的设计方案
大功率超声波电源的研究
1 引言 随着科学的发展和技术的进步.超声波在超声焊接、超声清洗、干燥、雾化、导航、测距、育种等领域的应用日趋广泛。现在的大功率超声波电源大都采用频率跟踪控制或功率控制。这种单一控制方法不仅会降低超声波电源效率,而且会影响输出精度和强度。如何使超声波电源根据实际负载实时,动态调节输出谐振频率和功率,从而保证超声波加工等操作的要求具有重要的理论研究和实际应用价值。 2 超声波电源系统的组成 超声波电源系统主要由220V电源、整流滤波、高频逆变单元、匹配网络、检测电路、PWM产生电路和驱动电路组成,如图1所示。   220V单相交流电经过二极管不可控整流电路得到直流电压,然后经过由MOSFET组成的高频逆变电路得
[电源管理]
大功率<font color='red'>超声波</font>电源的研究
基于51单片机的超声波发生器设计方案
  本设计的超声波发生器是利用单片机生成初始信号,然后经过一系列处理电路的作用后生成用来杀灭水蚤的超声波,成本低、效果好,可以在农业上加以采用。在此对3个模块进行设计:   (1)信号发生模块。12 MHz的8051单片机硬件连接及其程序设计。   (2)信号处理模块。驱动电路设计(CD4069非门集成芯片);倍频电路设计(S9014或ECGl08三极管、104普通电容、11 257.9 nH自制电感、1 kΩ电阻);整波电路设计(CD4069非门集成芯片);和频电路设计(CD4081与门集成芯片);选频电路设计(S9014或ECGl08三极管、104普通电容、112.58 nH自制电感、1 kΩ电阻)。   (3)信号检测
[单片机]
基于51单片机的<font color='red'>超声波</font>发生器设计方案
怎样跟踪超声波计量表的流量
内容说明 本发明涉及流体流量检测技术领域,尤其涉及一种用于超声波流量计量表的流量快速跟踪方法。 发明背景 流量计量仪表分为速度流量控制仪表和累积流量计量仪表。速度流量控制仪表广泛用于过程量的控制,它关注当前的流量速度( m/s ),比如食品、医药等行业用速度流量控制仪表嵌入生产流水线,控制各种配比成分的流量速度,从而控制配比比例,在这些系统中介质的流量一般都比较恒定,而且是外接供电,能够用更高的采样频率去计量较稳定的流体,达到更高的计量精度。累积流量计量仪表主要是计量累积量的水表、热量表等仪表。 近几年新推出的超声水表、超声热量表、射流水表和射流热量表都属于新型智能表。这些流量基表按频率f周期性的采集流体的流量信息,流体的
[测试测量]
怎样跟踪<font color='red'>超声波</font>计量表的流量
英飞凌在欧洲启动“Listen2Future”项目,助力MEMS麦克风和超声波创新
由英飞凌奥地利牵头的欧洲研究项目“Listen2Future”与来自 7 个国家/地区的 27 个合作伙伴一起启动,旨在开发用于工业和医学检查的新型和最小的麦克风和超声波传感器,使精确的迷你助听器、婴儿快速感染控制或可穿戴超声检测贴片成为可能。 医疗保健、健康老龄化、能源安全和产品质量是社会的基本问题,麦克风、超声波传感器等微型传感器在其中发挥着重要作用。 作为“数字耳朵”,它们记录声音信号并允许快速调查。 “Listen2Future”的研究将显着提高现有系统的性能,并产生全新的解决方案,造福于社会、人类和健康。 工业和医学的数字创新 其目标是以具有全球竞争力的成本将最小的微机电传感器(简称“MEMS 传感器”)投入
[传感器]
基于USB的便携式硬度计数据通信的实现方法
O 引言 硬度测量是工业生产,特别是材料加工工业中广泛应用的传统测试技术。便携式硬度计是一种较先进的硬度测试仪器,具有体积小、重量轻、易携带、操作方便等特点,尤其对一些大型、不可拆卸部件或精加工后要求复测硬度的零件的硬度测量特别有用。但由于一般便携式硬度计在硬件和功能等方面存在局限,所以不能满足生产过程中的复杂要求。 基于USB总线的数据通信具有安装方便、可靠性高、数据不易丢失、抗干扰能力强、便于数据传输和处理等优点,随着USB应用日益广泛,已经逐渐成为现代数据传输的主要趋势。 本文设计的便携式硬度计数据通信系统实现方案,将USB通信技术应用到硬度测量过程中,选用Philips公司的PDIUSBD12作为USB芯片,选用At
[单片机]
基于USB的便携式<font color='red'>硬度计</font>数据通信的实现方法
1.正确采购超声波电源及使用
超声波发生器,通常称为超声波发生源,超声波电源。它的作用是把我们的市电(220V或380V,50或60Hz)转换成与超声波换能器相匹配的高频交流电信号。从放大电路形式,可以采用线性放大电路和开关电源电路,大功率超声波电源从转换效率方面考虑一般采用开关电源的电路形式。线性电源也有它特有的应用范围,它的优点是可以不严格要求电路匹配,允许工作频率连续快速变化。从目前超声业界的情况看,超声波主要分为自激式和它激式电源。   发生器的原理是首先由信号发生器来产生一个特定频率的信号,这个信号可以是正弦信号,也可以是脉冲信号,这个特定频率就是换能器的频率,一般应用在超声波设备中的超声波频率为20KHz、25KHz、28KHz、33KHz、40
[电源管理]
超声波流量计传感器线缆的加长和剪切
  由于工业现场的特殊性,在一些超声波流量计安装现场需要对传感器线缆进行加长。一些超声波流量计厂家,特别是国外产品禁止对传感器线缆加长、剪切。如果我们能搞清楚传感器的结构原理就可以对传感器线缆加长、剪切,而不影响测量的准确度。   压电陶瓷的谐振频率在1MHz左右,国内厂家的超声波流量计(测水)基本都是1MHz的谐振频率。在阻抗特性上表现为容性。也就是说严格意义下一套探头的2只传感器的容抗应该一致,这样测量静态(0点)才会更精确。这样不难分析,如果对传感器线缆剪切,一套探头的2只传感器线缆应该剪切成一样的长度,保持阻抗特性的一致。   下面再说说传感器线缆加长。在讨论传感器线缆加长前要先对传感器线缆进行分析。对于一套探头中的1
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved