红外热波无损检测技术应用浅析

发布者:xi24最新更新时间:2016-07-06 来源: eefocus关键字:红外热波  无损检测技术 手机看文章 扫描二维码
随时随地手机看文章
  红外热波无损检测技术(简称热波检测)是一门跨学科、跨应用领域的通用型实用技术,是一种创新性的无损检测技术。它的研究和应用,对提高航空、航天器,多种军、民用工业设备的安全可靠性;新材料研究,尤其是复合材料研究;石油管道、发电设备的探伤和日常维护;承重机械设备、大型建筑金属结构件的裂纹、焊接状况、锈蚀、疲劳检测等都具有重要意义。美国多家大公司(如:GE、GM、波音、福特、洛克西德、西屋等)及政府机构(如:NASA、FAA、空军、海军)等已经在广泛应用和推广该项技术。[1]-[3]

  2003年9月该项技术的应用研究也列入了我国国家863高科技发展计划,还同时获得了211工程重点学科建设经费等的支持。

  2 热波检测原理

  热波(Thermal Wave)理论及应用的研究重点是研究热源,特别是变化性热源(如:周期、脉冲、阶梯函数热源)与媒介材料及其几何结构之间的相互作用。被加热后,不同媒介材料表面及表面下的物理结构特性和边界条件将影响热波的传输并以某种方式影响媒介表面的温场变化。通过控制热激励方法和测量材料表面的温场变化,将可以获取材料的均匀性信息以及其表面以下的结构信息,从而达到检测和探伤的目的。

  红外热波无损检测技术的核心是针对被检物的材质、结构和缺陷类型以及特定的检测条件,设计不同特性的热源(如:高能闪光灯、超声波、电磁、热风等)并用计算机控制进行周期、脉冲等函数形式的加热,同时采用红外热成像技术对时序热波信号进行捕捉和数据采集,采用专用软件进行实时图像信号处理和分析(参见图1)并最终显示检测结果。

  需要指出的是,由于应用热波原理并采用了主动式控制热激励的方法,热波检测技术与传统的被动式红外热成像检测是有本质区别的。

  对于不同被检测物、检测环境和条件,需要有针对性地设计采用大功率闪光灯、超声波、激光、THz波、热风、电磁感应、电流、机械振动等方式的热激励手段,相应的机械装置和控制装置及编制控制和图像数据处理软件。 

  3 主要应用和技术特点

  3.1 主要应用

  --对航空器/航天器铝蒙皮的加强筋开裂与锈蚀的检测,机身蜂窝结构材料、碳纤维和玻璃纤维增强多层复合材料缺陷的检测、表征、损伤判别与评估。

  --火箭液体燃料发动机和固体燃料发动机的喷口绝热层附着检测。涡轮发动机和喷气发动机叶片的检测。

  --新材料,特别是新型复合结构材料的研究。对其从原材料到工艺制造、在役使用研究的整个过程中进行无损检测和评估;加载或破坏性试验过程中及其破坏后的评估。

  --多层结构和复合材料结构中,脱粘、分层、开裂等损伤的检测与评估。

  --各种压力容器、承重和负载装置表面及表面下疲劳裂纹的探测。

  --各种粘接、焊接质量检测,涂层检测,各种镀膜、夹层的探伤。

  --测量材料厚度和各种涂层、夹层的厚度。

  --表面下材料和结构特征识别与表征。

  --运转设备的在线、在役监测。

  3.2 技术特点

  热波检测具有如下技术特点:

  --适用面广:可用于所有金属和非金属材料。

  --速度快:每个测量一般只需几十秒钟。

  --观测面积大:根据被测对象和光学系统,一次测量可覆盖至平方米面积量级。对大型检测对象还可对结果进行自动拼图处理。

  --直观:测量结果用图像显示、直观易懂。

  --定量:可以直接测量到深度、厚度,并能作表面下的识别。

  --单向、非接触:加热和探测在被检试件同侧,且通常情况下不污染也不需接触试件。

  --设备可移动、探头轻便:十分适合外场、现场应用和在线、在役检测。

  3.3 发展前景

  红外热波无损检测技术是一项通用性的实用技术,可应用于各种学科领域大到航天飞机,小到纤维、薄膜,不同材料,不同结构和检测环境要求的各类探伤和检测问题。除了理论和基础研究外,每一种成功的应用都会形成一系列标准,包括方法、检测规程、标定物、缺陷判据、数据和图像显示标准等。成功的加热手段、有效的图像处理和分析方法、巧妙的机械传动装置与控制都有机会申请专利,可拓展性很强。

  4 国内外发展概况

  1990年以来,国际上积极开展红外热波无损检测技术的研究。美国无损检测协会组织编写的无损检测手册红外与热检测分册里,有专门的大量的篇幅论述红外热像无损检测在航空航天、电子、石化、建筑等许多领域的应用[1]。

  美国、俄罗斯、法国、加拿大、澳大利亚等国已把红外热波检测技术广泛应用于飞机复合材料构件内部缺陷及胶接质量检测、蒙皮铆接质量检测。美国还把它用于航天飞机耐热保护层潮湿检测,Atlas空间发射舱复合材料的粘脱检测,A3火箭无损检测。[4]

  美国韦恩州立大学的工业制造研究所在该技术领域的研究上一直得到美国政府机构和许多大公司科研基金的支持,处在该领域研究的最前沿,取得了很多实际的研究成果。在FAA1998,1999和2000年飞机机身无损探伤技术竞标中,此技术击败包括X射线、超声波、暗电流检测等多项技术而唯一胜出。并逐渐被 NASA、美国空军和海军、波音、洛克西得,各大汽车公司及各大航空公司等许多知名大公司所采用。自90年代中期以来,这些政府机和大公司纷纷设立了红外热波无损检测实验室,用于研究解决各自独特的无损检测问题。


关键字:红外热波  无损检测技术 引用地址:红外热波无损检测技术应用浅析

上一篇:无损检测技术的重要性和可靠性
下一篇:超声无损检测技术详解

推荐阅读最新更新时间:2024-03-30 23:18

无损检测中集成电路引线焊接无损检测技术的研究
  1、引言   研究和寻找集成电路引线焊接质量的无损检测方法一直是大家所关心的问题。传统检查焊接质量的方法是用机械力推(或拉)动测试,但它已不适应输入/输出端点多达300个以上,引线间距小于0.1mm的集成电路引线焊接质量的检测,且检测为破坏性,不足之处显而易见。激光扫描声学显微镜(简称SLAM)作为一种超声无损检测新技术,由于能给出被测物体内部结构的声显微图像,反映出被测物体的机械弹性参数分布,故应用广泛。本文分析了SLAM用于集成电路引线焊接无损检测的一些设计参数和技术指标,通过对我们已有的国内首创的SLAM实验系统的改造,对一些集成电路引线焊接进行了模拟性实验并探测到焊接质量的缺陷。   2 SLAM系统的工作原理
[测试测量]
<font color='red'>无损</font>检测中集成电路引线焊接<font color='red'>无损</font><font color='red'>检测技术</font>的研究
涡流无损检测技术在钢铁工业中的应用
涡流检测作为五大常规无损检测方法之一,在钢铁行业中应用非常广泛,包括金属棒、线材探伤、结构件疲劳裂纹探伤、材料成分及杂质含量的鉴别、热处理状态的鉴别、混料分选、测量金属薄板的厚度等诸多方面。近年来,随着对涡流检测技术认识的深入以及计算机、仪器仪表和数字信号处理技术的发展,涡流无损检测技术在钢铁工业中的应用取得了一定突破,对于某些以往认为是检测极限或“不可能”的难题,找到了解决的办法或思路。例如,目前有人提出了1100℃以上高温连铸板坯表面缺陷模拟在线检测,将传统的涡流检测对象的温度提高了几百度,而瑞典一家公司研制出了检测1000℃高温钢和其他金属板材、坯材的涡流检测设备。此外,涡流检测的应用还延伸到了不锈钢毛细管、直径小于1mm的丝
[测试测量]
复合材料的超声无损检测技术
超声无损检测技术是复合材料非常重要的检测手段,其使用的检测频率通常为0.5~25MHz。超声脉冲通过探头发射进入待检测材料,并对反射和穿透信号进行分析,以得到材料结构的相关信息。虽然手动检测方法还在广泛使用,但越来越多的航空制造企业开始使用自动化的检测系统以产生直观的扫描图像,如投影图像和横断面图像,即所说的C 扫描和B 扫描成像。 许多航空材料和结构可以用这种方式进行成像和显示,并可检测多种类型的缺陷。对于复合材料,需要检测粘接缺陷、分层缺陷、孔隙率以及分层间的异物等。 检测技术 用于自动化检测的设备通常使用3 种耦合方式,从使从探头发射的超声有效进入待检零件,他们分别是接触法、水浸法和喷水法。 接触法,即让检测探头与待检
[测试测量]
压力容器无损检测技术及其应用
一、引言 从广义上讲,凡盛装有压力介质的容器即为压力容器,也就是说,凡承受流体介质压力的密闭设备均可称为压力容器。压力容器是一种可能引起爆炸或中毒等危害性较大事故的特种设备,一旦发生爆炸或泄漏,往往并发火灾、中毒、污染环境等灾难性事故,所以压力容器比一般机械设备有更高的安全要求。检验是压力容器安全管理的重要环节。压力容器检验的目的就是防止压力容器发生失效事故,特别是预防危害最严重的破裂事故发生。因此,压力容器检验的实质就是失效的预测和预防。现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法。目前对压力容器的检测方法有多种,本文主要介
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved