如何准确测量CAN节点的Busoff恢复时间

发布者:游走人间最新更新时间:2016-08-06 来源: 21ic关键字:准确测量  CAN节点  Busoff  恢复时间 手机看文章 扫描二维码
随时随地手机看文章

当CAN通信出现故障时,CAN控制器会让故障节点从主动错误状态进入被动错误状态,甚至进入总线关闭(Busoff)状态,使故障节点脱离总线的通信,使其不影响正常节点的通信,但该控制方案将导致在系统重新上电之前,进入总线关闭状态的节点会持续无法与其他节点做数据的交互,如若节点只是暂时的故障,那让节点实现自恢复的功能,则是更为上乘的控制方法。所以CAN总线设计规范对于CAN节点的Busoff自恢复方式做了严格的规定,充分考虑了偶发故障与持续故障的处理。具体规范如表 1所示,为测试标准“GMW14242 BusOff后的恢复时间”。目前多家整车厂对其系统供应商的设备也都提出了相应的Busoff后恢复时间的控制策略要求。

表 1 BusOff后的恢复时间标准

QQ截图20150813103907.png

所以每个厂家在产品投入使用前,都要进行CAN节点DUT(被测设备)Busoff后的恢复时间测试。但由于测试中要实施对通信信号的干扰,并判断节点是否已进入Busoff状态,然后才能去测量其恢复的时间,即使是使用示波器去观察信号,也很难做出准确的测量。为了解决该问题,广州致远电子股份有限公司改进了测试方法,使用CANScope-Pro总线分析仪、CANScope-StressZ扩展板进行全自动测试操作,在完成操作后,使用其瞬态流量分析插件,即可准备判断测量CAN节点在Busoff后的自恢复时间。

试验原理:由测试设备触发DUT发送报文,然后制造干扰(CANH对地短路、破坏帧内容等),导致DUT的报文发送失败,在导致连续32次发送失败后,DUT即进入BusOff状态。测量到下一次DUT发送报文的时间间隔即为BusOff后的恢复时间。

测试方案如下:

1. 本测试使用CANScope-Pro和CANScope-StressZ。需要DUT上电后,初始化控制器后,发送CAN报文或者通过CANScope触发DUT发送报文。CANScope勾选总线应答。如图 1所示,进行测试连接。使能CANScope-StressZ的RHL为60欧。

测量1.jpg

 

图 1 BusOff后的处理测试连接

 

2. 启动CANScope-Pro,将RHL调节为60欧,设置好和被测DUT相同的波特率,点击开启。控制DUT能发出各种预期的报文,并且能被CANScope-Pro收到。

3. 打开CANScope-Pro的“错误与干扰”,将“接受干扰”使能,并且将“持续时间”改为100,点击“应用”。如图 2所示。此时即可实现较高的干扰强度,保证每一个DUT发出的报文都可以被干扰。

QQ截图20150813104621.png

图 2 启用接收干扰

4. 干扰一段时间后,点击报文界面的“停止”。打开CANScope-Pro的“流量分析”,找到某一个连续32个干扰结果,如图 3所示。

QQ截图20150813104634.png

图 3 流量分析干扰结果

然后将流量分析界面缩小,测量两个干扰团之间的时间间隔,即为BusOff后的恢复时间。如图 4所示为70.7915ms。

QQ截图20150813104706.png

图 4 BusOff后的恢复时间

CANScope分析仪周立功致远电子研发的一款综合性的CAN总线开发与测试的专业工具,集海量存储示波器、网络分析仪、误码率分析仪、协议分析仪及可靠性测试工具于一身,并把各种仪器有机的整合和关联;重新定义CAN总线的开发测试方法,可对CAN网络通信正确性、可靠性、合理性进行多角度全方位的评估;帮助用户快速定位故障节点,解决CAN总线应用的各种问题。

关键字:准确测量  CAN节点  Busoff  恢复时间 引用地址:如何准确测量CAN节点的Busoff恢复时间

上一篇:如何进行CAN节点信号特征测试
下一篇:如何对CAN节点信号特征进行测试

推荐阅读最新更新时间:2024-03-30 23:20

60V I²C 电池监视器以 1% 准确测量电荷状态参数
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2017 年 1 月 30 日 –  凌力尔特公司 (Linear Technology Corporation) 推出多节电池监视器 LTC2944,该器件可用来直接测量 3.6V 至 60V 的电池组。电源和测量引脚上绝对不需要电平移位电路以连接多节电池电压,因此最大限度减小了总电流消耗,同时保持测量准确度。LTC2944 是一款真正的高压电池监视器,能够以 1% 的准确度测量电荷、电压、电流和温度,要准确地评估电池电荷状态 (SoC),这些参数是必不可少的。 LTC2944 非常适合多节电池应用,包括电动汽车、电动自行车 / 摩托车 / 轻型摩托车、轮椅、高尔夫球车和
[电源管理]
双通道轨至轨100V电源监视器 以±0.3% 的准确测量电流和电压
亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 旗下凌力尔特公司 (Linear Technology Corporation) 推出宽范围 I2C 系统监视器 LTC2992 ,该器件无需额外的电路,就能够监视两个 0V 至 100V 轨的电流、电压和功率。LTC2992 支持灵活的电源选择,从所监视的 3V 至 100V 电源、2.7V 至 100V 辅助电源、或从内置并联稳压器供电。这些电源选择在监视任何 0V 至 100V 轨时,无需单独的降压型稳压器、并联稳压器或低效率的电阻分压器。LTC2992 是一款简便的单 IC 解决方案,用 3 个 ΔƩ ADC 和一个乘法器提供 8 位或 12 位电
[测试测量]
双通道轨至轨100V电源监视器 以±0.3% 的<font color='red'>准确</font>度<font color='red'>测量</font>电流和电压
基于CAN总线的通信节点设计
  1 引 言       在20世纪80年代初,德国的BOSCH公司提出了用CAN总线(Controller Area 1993年ISO正式颁布了ISO11898CAN高速应用标准和ISO11519CAN低速应用标准,这为CAN总线的标准化、规范化铺平了道路。CAN总线主要具有以下特性:        (1)CAN采用多主方式工作,网络上任意节点均可以在任意时刻主动地向网络上的其他节点发送信息而不分主从,通讯方式灵活且无需站地址等节点信息。 (2)CAN网络上的信息可分成不同的优先级,满足不同的实时性要求;高优先级的数据最多可在134μm内得到传输。 (3)CAN的直接通信距离最远可达10 km(速率
[嵌入式]
基于P87C591的CAN总线信号采集节点的设计
  介绍了CAN总线和P87C591单片机的特点,给出了基于P87C591单片机的信号采集节点的软、硬件设计,指出了硬件电路设计中应注意的问题,在软件设计中重点介绍了节点初始化、报文发送和报文接收等子程序。   1 引言   在工程机械液压系统状态监测与故障诊断中,传感器信号的调理、采集和信号的特征提取,以及把采集的数据发送给主机(中心处理单元)要由信号采集单元实现。本文介绍了基于P87C591的CAN总线系统信号采集节点的设计。   CAN是1986年2月在SAE (汽车工程人员协会)大会上, 由Rober Bosch公司提出的新总线系统,称之为“汽车串行控制局域网”(Automotive Se.rial Controll
[单片机]
基于P87C591的<font color='red'>CAN</font>总线信号采集<font color='red'>节点</font>的设计
基于C8051F040的CAN总线智能节点设计
引言 “X型火控系统”根据实际需要采用了CAN总线方式来实现其内部单体间的通信。CAN总线是一种用于各种设备检测及控制的现场总线,它是一种多主总线,在高速网络和低成本的节点系统中应用都很广泛。CAN总线与一般的通信总线相比,它的数据通信具有突出的可靠性、实时性和灵活性。其特点如下: *可以多主方式工作。 *CAN节点只需对报文的标识符滤波即可实现点对点、一点对多点及全局广播方式发送和接收数据。 *CAN总线通信格式采用短帧格式。 *采用非破坏性总线仲裁技术。 *直接通信距离最大可达10km (速率5kb/s以下),最高通信速率可达1Mb/s (此时距离最长为40m),节点数可达110个,通信介质可以是双绞线、同轴电缆或光导纤维。
[工业控制]
采样率比带宽还低,为何能准确测量
  市面上的高带宽功率分析仪往往采样率并不高,只有带宽的二分之一或更低。这真的合理吗?能可靠采样输入信号吗?这样的采样方法能支持高精度的电参数测量吗?对比高采样率采样,这样的采样方法有什么好处?本文将解析这一现象背后的原理。   使用较低且适当的采样率对高频信号进行采样对功率分析仪有以下意义:   1.利用等效采样原理对高频信号进行精细采样,使采样后的离散信号有更好的相位分辨率;   2.不必采用高采样率的ADC(ADC高采样率意味着转换位数的降低)。   与示波器等使用高于带宽的采样率的仪器不同(示波器需要高采样率保证还原波形的线条),功率分析仪使用低于带宽的采样率也能够保证测量结果的精度与稳定度。   对于高频信号
[测试测量]
采样率比带宽还低,为何能<font color='red'>准确</font><font color='red'>测量</font>?
如何使功率分析仪测量结果更准确
高端测量仪器都是由许多电子元器件组成,仪器在工作过程中,电子元器件产生的热量汇聚,使仪器内部温度升高,导致仪器精度下降。高端测量仪器是如何解决温度对自身精度的影响呢? 温度影响电子元器件的性能 1.对二极管伏安特性的影响 在环境温度升高时,二极管的正向特性曲线将左移,反向特性曲线将下移,如图1所示。在室温附近,温度每升高1℃,正向压降减小2~2.5mV;温度每升高10℃,反向电流约增大一倍。可见,二极管的特性对温度很敏感。 图 1 二极管的伏安特性 2.对晶体管输入输出特性的影响 由于半导体材料的热敏性,晶体管的参数几乎都与温度有关。 温度对输入特性的影响:与二极管伏安特性类似,当温度升高时,正向偏移将左移
[测试测量]
如何使功率分析仪<font color='red'>测量</font>结果更<font color='red'>准确</font>
基于dsPIC30F6014的CAN节点设计
引言 CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。作为一种技术先进、可靠性高、功能完善、成本合理的远程网络通讯控制方式,CAN-bus已被广泛应用到各个自动化控制系统中,具有不可比拟的优越性。 新型16位dsPIC30F6014数字信号控制器结合单片机的控制优点及数字信号处理器(DSP)的高速运算特性,为嵌入式系统提供了单一芯片解决方案。 本篇论文以CAN协议为基础,结合dsPIC30F6014的突出性能,在设计通讯接口过程中,提出了基于dsPIC30F6014数字信号控制器的CAN节点设计方法。 1 dsPIC30F6014数字信号控制器
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved