什么是实时频谱分析仪?
所谓实时频谱分析仪(实时频谱仪)就是指能实时显示信号在某一时刻的频率成分及相应幅度的分析仪。
在实时频谱仪中具体又分为并联滤波器型和FFT(快速傅里叶变换)型两种。
1、并联滤波器型实时频谱仪(实时频谱分析仪)
并联滤波器频谱分析仪是一种真正的实时频谱分析仪,其工作原理如下图:
被测信号经过带宽放大后,由多路分配器分送至多个带通滤波器,每个滤波器从被测信号选出需要的频谱分量,经检波器检波后,送到各显示器并保持显示。在设计和制作这种实时频谱分析仪时,每个滤波器的中心频率调谐在频谱内的不同频率上,这就要求滤波器的带通很窄,滤波器的特性曲线接近矩形,且各滤波器的带通频率范围要适当重叠。使频谱分析仪能够覆盖整个频率范围,被测信号中任何一个频谱成分不被遗漏,又能使被测信号中的不同频率成分在不同显示器上显示。这样各显示器上所指示的是被测信号在该时刻所具有的频谱分布情况。这种分析仪的优点是所有的滤波器在所有的时间内都和输入的被测信号连接,可以瞬时检测和显示瞬变的不确定信号,且测量速度快,动态范围宽和幅度测量准确度高等,其缺点是工作频率范围低,大约在100KHz,这是由于该分析仪能显示的离散频谱的数目取决于滤波器的数目,而实时频谱分析仪的分辨率带宽取决于滤波器的带宽,可以设想频率范围覆盖至100KHz,分辨率为1KHz的实时频谱分析仪就需要100个滤波器和显示器,这说明该类实时频谱分析仪的价格是非常昂贵的,典型的并联滤波器实时频谱分析仪采样32个滤波器来折中成本和分辨率。
2、快速傅里叶变换(FFT)实时频谱分析仪
快速傅里叶变换算法可以把某一个时刻的时间函数f(t)转换成频率函数s(w),FFT实时频谱分析仪的方框图如下图:
在FFT实时频谱分析仪中,首先是时域对被测信号进行采样,经过高速A/D转换和快速傅里叶分析计算后,不仅可以确定幅度-频率函数,还可以确定确定相位-频率函数,从而获得被测信号的频率、幅度和相位信息,故可对非周期信号和瞬态信号进行频域分析。
FFT实时频谱分析仪的一个优点就是能够快速地捕获和分析扫频式频谱仪不能捕获的瞬变的单次出现的信号,另一个优点是能测量幅度和相位。缺点是FFT实时频谱分析仪受A/D转换采样速率的限制,由于技术的快速发展,其A/D和采样速率都有很大提升,众多厂商也纷纷不断推出自己的实时频谱分析仪;如:是德科技的RTSA系列实时频谱分析仪、R&S的FSVR系列实时频谱分析仪、TEK的RS系列实时频谱分析仪、Signal Hound便携式实时频谱分析仪、安诺尼的手持式实时频谱分析仪、迈克尼斯的手持式实时频谱分析仪等等;实时带宽更是达到了200MHz。
关键字:实时频谱 分析仪 工作原理
引用地址:
讲解实时频谱分析仪的工作原理
推荐阅读最新更新时间:2024-03-30 23:21
力矩电机的工作原理_力矩电机的种类
力矩电机的工作原理 力矩电机的工作原理与其他电机类型相似,都是基于电磁感应原理来实现的。它是一种交流电机,通常由定子、转子、电刷、电枢等部分组成。 当电流通过定子线圈时,会产生旋转磁场。转子中的导体受到旋转磁场的作用,产生感应电流,并与旋转磁场相互作用,产生电磁力矩,从而驱动转子转动。同时,通过电刷与电枢之间的接触,使电流沿着电枢流动,进一步增强电磁力矩。 力矩电机的特点是能够提供大的转矩,也就是能够承受大的负载,因此适用于一些要求大转矩的应用场合。此外,力矩电机还具有响应速度快、控制精度高等优点,可以满足各种精度要求较高的应用场合。 力矩电机的种类 力矩电机可以根据不同的分类方式进行分类,下面
[嵌入式]
空分气体分析仪器应用中的若干问题
近些年来,随着国内空分设备向大型化发展,为了适应大中型空分生产管理及质量管理的需要,与之配套引进的气体成分分析仪器的数量和种类越来越多。这些先进的气体分析仪器对空分生产管理及气体产品质量的提高起到了一定的促进作用。但是,由于一些历史上的原因,大多数从事分析仪器应用和管理的人员都是来自热工仪表、自动化工程及仪器制造专业和部门,他们没有从事过或较少接触和研究过气体分析仪器的选型和应用技术,因此一些企业对进口的仪器设备选型不当,仪器功能不能满足生产需要,在经济上造成浪费。另一方面,进口气体分析仪器作为一类高科技产品和高灵敏度、高精度的科技工具,往往由于对其使用要求认识不足及人员操作水平不高而应用不好,对空分生产及全面质量管理不能发挥应有的
[测试测量]
LED台灯工作原理
遵 循安全第一的民用电器的设计理念,LED 光源是一种低电压直流恒流源的 发光器件,不能用100-220V 的交流高压电直接点亮,因此,LED 台灯方案设计 思路,首先要将高压的交流电变换成低压的直流恒流源,才能点亮LED 光源。使 用最经济有效的方法降压和进行交直流变换是设计的首要考虑,当今便携式电子 产品使用交流电源的交直流降压变换器--适配器(Adapter)就成了既经济实惠、 又现成、又好用的首选。适配器的输出电压要求稳定在DC12V,输出电流要根据 LED 的光源的功率来选择,一般要给予30%的余量,以3X1W 的白光LED 光源为例, 1W 的白光LED 的标准工作电流应为350mA,因而3 个LED 光源串联其电路需
[模拟电子]
网络分析仪设定电延迟,如何通过频率计算等效相位延迟?
根据电延迟,可通过以下公式计算等效相位延迟: θ°= Ftest * Delay * 360 其中: θ° = 等效相位 Ftest = 频率(Hz) Delay = 延迟(秒) 360 = 弧度到度数的转换系数 例如: 起始频率:1.0 GHz;终止频率:2.0 GHz;点数:201 通过是德电子校准件(ECal)进行完整的双端口校准 单通道,双迹线,两个窗口,每个窗口显示一条迹线 被测件――Keysight N4419AK20,3.5mm 阳头至 3.5mm 阴头电缆组件。 上边的窗口,‘Tr1’,S21,Format Phase(格式相位),Delay = 0S(无电延迟) 下边的窗口,‘Tr2’,S21,
[测试测量]
网络分析仪的噪声系数
什么是噪声系数? 噪声系数是用来描述一个系统中出现的过多的噪声量的品质因数。把噪声系数降低到最小的程度可以减小噪声对系统造成的影响。在日常生活中,我们可以看到噪声会降低电视画面的质量,也会使无线通信的话音质量变差;在诸如雷达等的军用设备中,噪声会限制系统的有效作用范围;在数字通信系统中,噪声则会增加系统的比特误码率。系统设计人员总是在尽最大努力使整个系统的信噪比(SNR)达到最优,为了达到这个目的,可以用把信号提高的办法,也可以用把噪声降低的办法。在像雷达这样的发射/接收系统中,提高信噪比的一种方法是用更大的大功率放大器来提高发射信号的功率,或使用大口径天线。降低在发射机和接收机之间信号传输路径上的损耗也可以提高SNR,但是信号在
[测试测量]
电容电流测试仪的工作原理
随着现在社会的发展,我们生活中时时刻刻不在用着电,离开了电,我们会失去光明,失去动力,所以对于电容电流的检测很重要,那么电容电流测试仪有什么工作原理?下面说一下。 电容电流测试仪的简介 目前,我国配电系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值。传统的测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。 由
[测试测量]
分相式单相电机的工作原理 三相电机的工作原理
分相式单相电机的工作原理 分相式单相电机利用电容或电阻串人感性启动绕组中起到移相作用,使启动绕组和工作绕组的电流相位错开,即所谓“分相”。 (1)电容分相单相电机 图(a)所示为电容分相单相电机的原理接线。由于电容的移相作用比较明显,只要在启动绕组中串人适当容量的电容(一般约为20~50μF),就可使两绕组的电流相位差接近于90°,这时的合成旋转磁场接近于圆形旋转磁场,因而启动转矩大同时启动电流较小。这种单相电机应用普遍,启动后可根据需要保留(称为电容运行电机)或切除(称为电容启动电机,由置于电机内部的离心开关执行)。如果需要改变电机的转向,只需将任意一个绕组的出线端对调即可,这时两绕组的电流相位关系相反。 分相式单相电机
[嵌入式]
芯片上搭建神经元电路 或破脑神经网络工作原理
研究人脑神经网络的通讯和协调运作,是现代神经科学领域最大的挑战之一。据美国物理学家组织网7月13日(北京时间)报道,最近,以色列特拉维夫大学电力工程学院开发出一种新型芯片实验室平台,利用先进材料和组织工程技术将神经元和电子学结合起来,研究脑神经网络的工作原理。研究论文发表在最新一期《科学公共图书馆·综合》上。 以色列特拉维夫大学电力工程学院博士生马克·史恩说,计算机的逻辑运算建立在人类逻辑的基础上,但计算机的信息处理过程能分解成单个逻辑步骤,而人脑的信息处理过程却不可以。人脑由大量的电路互相连接而成,脑电路工作就像在编码,我们可以通过简化脑神经网络,控制细胞之间的连接,来研究人脑逻辑。
研究人员利用电极和活的神经细
[医疗电子]