GPS 测试中的一项重要因素是接收器的灵敏度。主要测试内容是捕获灵敏度和跟踪灵敏度。一般而言,地基天线接收到的 RF(射频)功率水平介于 -125dBm 至 -150dBm 之间,具体取决于环境因素。
为产生此范围内的极低 RF 功率水平,有必要采用外部无源衰减器来降低 LabSat 输出功率。如此以来,信号水平可被降至所需范围,并具有最低的附加噪声。衰减器的实测值应由用户确定,以适合待测试的设备,但作为一项指南,两个并用 20dB 衰减器(共计 40dB)可提供的 RF 功率范围约为 -125 至 -155dBm。
尽管用户记录的 RF 信号可以此方式用于测试,但建议的方法是使用 SatGen 软件所创建的计算机生成模拟文件。这是因为 SatGen 创建的文件会包含具有恒定信噪比的“纯”GPS 信号。用户记录的场景会包含记录时出现的额外噪声以及不断变化的信噪比,难于进行对比。
图片:采用 SatGen 所创建 GPS 信号的 RF 功率水平输出示例。-85dBm 至 -115dBm 的范围对应于标准 LabSat 输出范围。
通过在回放过程中调节衰减滑块,RF 功率输出水平可从 -85dBm 降至 -115dBm。
但由于 -85 至 -115dBm 的范围高于背景噪声水平,GPS 信号对于 GPS 接收器始终可见,因此测得的 C/NO dBHz 水平对于滑块衰减几乎没有关联性。降低 LabSat RF 水平就会发现 C/NO 存在一定程度的下降,但并非线性下降。
为 LabSat 添加 40dB 外部衰减,会将 RF 功率降至大约 -125dBm 至 -155dBm 的范围。该范围与 GPS 天线在户外接受的 RF 水平一致,并低于背景噪声水平。以此方式降低信号后,就可对 C/NO 实现更充分的线性控制。
上表所示为使用 LabSat 输出上的多种外部衰减器,以 UBLOX GPS 引擎测得的 C/No 值。对于每项外部衰减器值,LabSat RF 水平均按 5dB 的步阶变化。
根据表中所示,信噪比控制的线性度随着外部衰减的增加而改善。但如果外部衰减远高于 40dB,内部可用的滑块范围就会减少。
左侧屏幕截图所示为 UBLOX U-Center 软件的输出示例。GPGSV NMEA 信息会打开,以显示每颗卫星的 C/NO 水平。
UBLOX TIM-LA 装置采用以下设置进行测试:
- LabSat
- 使用 SatGen 生成的静态场景
- 2 个 20dBm 衰减器 (Minicircuits VAT-20W2)
针对 TIM-LA,UBLOX 数据表采用 -138dBm 用于捕获灵敏度,-146dBm 用于跟踪灵敏度。使用上述设置,进行以下测量:
通过频谱分析仪对无衰减 LabSat 输出进行的基线测量得到 LabSat 计算值。测得的值使用 40dB 外部衰减器和滑块值进行加总,以获得估算的 RF 功率。
从中可以看出,根据用频谱分析仪进行的相对粗糙的校准,可获得接收器灵敏度的合理近似值。在试用时,建议用户采用专用 RF 功率计以得到更精确的读数,进而说明线缆与衰减器存在的偏差。
关键字:接收器 灵敏度测试
引用地址:
接收器灵敏度测试
推荐阅读最新更新时间:2024-03-30 23:21
DS90CF364LVDS发送/接收器在RGB液晶屏应用
1 引言
当今,配备数字RGB接口的TFF液晶显示屏以其图像清晰、接口简单和亮度高等特点而在电脑笔记本、GPS、机顶盒、WebPad等设备中得到了广泛应用,但是由于驱动显示屏的视频信号频率较高而无法直接进行较远距离传输。为此,可以在图形控制器到LCD之间的FPD(Flat Panel Display)链路中采用LVDS(Low Voltage Differential Signaling)技术来克服这一问题,实际使用证明:经它引接后的传输距离可扩大至10米左右,从而充分满足了液晶屏的一般应用场合。
数字RGB视频信号中除了包括图像信号之外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高
[电源管理]
电脑遥控接收器电路的制作步骤
现在的电视卡都带有配套的遥控器并在卡上集成接收器,可以实现遥控换台以及一些其他的电视/电脑操作,但是,难道没有电视卡的朋友就无缘遥控了吗? 电脑遥控接收器电路及制作
其实,自制一个电脑遥控接收器,是非常容易的。首先,我们制作的电脑遥控器必须使用红外方式的(不能是射频的遥控器),一般电视、影碟机的遥控器都可以使用,如果手头没有闲置的遥控器,可以到小商品市场购买,一般的电视机遥控器即可,售价在十几元。注意,不要使用空调的遥控器,尽管它也是红外发射的,但是每次按键后,它都会把空调当前所有状态(模式、温度、风速、风向)发送一遍,导致每次发送的码串很长,会导致软件辨识错误。
经过比较,我们选择了Girder(v3.3.7)这个遥控软件
[嵌入式]
由于新型组件的出现,我们需要对接收器架构进行硬件比较
超外差式无线电接收器架构和直接转换 (零差式或零中频) 无线电接收器架构之间的竞争可以一直追溯到 20 世纪 30 年代。就特定类型的设备而言,每种架构都有自己的优势。超外差式架构在蜂窝基站中很流行,而直接转换在软件定义无线电应用中是很普遍,例如城市无线电台。直接转换架构的硬件很简单,与超外差式架构相比,前者成本更低、功耗更低、需要更少的电路板空间,而超外差式架构对蜂窝服务提供商更有吸引力。然而,处理 DC 偏移等固有问题导致了软件的复杂性,因此硬件的简单性被软件的复杂性抵消了。本文将探究人们对硬件差别的感觉以及硬件差别的现实情况,以探索易用的硬件方案,而对软件问题则略而不谈。
蜂窝网络上传送的数据像海啸一样汹涌奔腾,
[电源管理]
支持通过UTP传输视频的完整宽带驱动器和接收器解决方案
针对RGB、YPbPr及其他电路 功能与优势 无屏蔽双绞线(UTP)——如Category-5e (Cat-5e)——最初设计为传输局域网(LAN)流量,现已成为其他许多信号传输应用的经济型解决方案,因为它具有可观的性能和低成本优势。这些应用均为传输宽带视频信号的系统,它们采用4对双绞线中的3对传输红、绿、蓝(RGB)电脑视频信号或亮度和两个色差(YPbPr)、高清分量视频信号。视频信号消隐间隔中可嵌入所需的水平和垂直同步脉冲,这些脉冲亦可在3对双绞线中作为共模差分信号传输。这些系统经常包含视频交叉点开关,并用于将小部分视频信号源分发至许多显示器(如数字标牌),或将大部分视频信号源分发至几个显示器,如键盘-视频-鼠标(KVM)
[家用电子]
使用前置滤波器LNA模块改善同步操作GPS的接收器灵敏度
前言
随着时代的演进,移动电话已因加入如WiFi、蓝牙和GPS等无线通讯技术变得越来越复杂,而越来越多的无线信号也令设计工程师必须利用强大的滤波技术来避免手机设计中面临的干扰问题,特别是全球定位系统(GPS)功能。
对于同步全球定位系统S-GPS,GPS信号的接收以及语音或数据信号的传送会在手机中同时发生,而语音或数据发送信号可能会泄漏到GPS的接收路径,造成低噪声放大器或后端电路的过载,影响接收器的灵敏度。这给手机设计工程师带来了强大的挑战,因为他们必须决定如何在微弱的GPS输入信号下维持接收器的灵敏度,同时还得面对语音或数据发送信号的干扰。这就需要一个具有非常良好的强大干扰信号屏蔽能力,并且可以提供低噪声系数和微弱
[电源管理]
用基于CMOS技术的接收器芯片设计高性价比的汽车收音机
高增长的经济体如巴西、印度尼西亚、印度和中国已出现新兴中产阶级和快速增长的汽车市场。这些市场要求汽车零售价相对较低,因此给汽车组件带来很大的成本压力。此外,在发达经济体如美国、欧洲国家和日本的汽车市场,自2008年全球金融危机发生后,对于成本敏感的解决方案需求也在不断增加,而且由于几乎所有轿车、卡车和货车都装有AM/FM收音机,收音机模块制造商正积极寻求降低成本且满足传统汽车级性能要求的解决方案。
使用在汽车上的AM/FM调谐器传统技术主要是10.7MHz中频调谐器架构的BiCMOS调谐器。这项技术/架构可实现收音机接收性能,但是成本却极其高昂:该技术将前端RF电路与后端的数字处理引擎(例如DSP和MCU)结合,在单芯片电路中
[嵌入式]
基于热管的太阳能中温接收器设计
热管技术已成功应用于太阳能低温热利用领域,应用形式主要包括热管式真空管太阳能集热器、复合抛物面聚光器(CPC)热管式太阳能集热器等。
热管应用于太阳能集热器具有以下优点:热效率高;吸热段与放热段分离,可靠性高;承压性能好;热虹吸管具有单向导热性,热管式太阳能集热器夜间散热损失减少。在太阳能中温(250~400℃)热利用领域,主要是抛物面槽式太阳能集热器中热管技术应用较少,日本的Noboru Ezawa等M。o在20世纪80年代初研制了用于抛物面槽式热管太阳能集热器的中温热管接收器,但研究没有继续下去,希腊的Bakos等旧1设计了采用热管接收器的抛物面槽式太阳能集热器。中温热管接收器没有得到广泛研究的原因在于采用中温热管
[嵌入式]
频谱分析仪的工作原理和如何提高测试灵敏度
简单介绍了频谱分析仪的工作原理和频谱分析仪的频率分辨力,提出了使用频谱分析仪进行测试时如何选择频率分辨力和提高测试灵敏度。 一、 频谱分析仪的简单工作原理 现在所用的频谱分析仪多为超外差式,并采用多次变频(3~4次),以降低中频频率,实现窄通带和高分辨力。超外差式频谱分析仪的基本工作原理如图 1所示。输入信号与本振(LO)混频,产生中频(IF)信号经窄带中放被送到包络检波器,检波器输出信号被放大并使屏幕显示产生垂直偏转,扫描发生器保证屏幕显示的水平频率轴和本地振荡器调谐同步,它同时驱动水平偏转调谐LO。 图 1 超外差式频谱分析仪基本工作原理 二、 频率分辨力 当信号进入频谱分析仪显示时,所显示的形状其实是频谱分析
[测试测量]