具有过压保护功能的高端电流检测电路设计

发布者:脑力驿站最新更新时间:2016-08-25 来源: eefocus关键字:过压保护  电流检测电路 手机看文章 扫描二维码
随时随地手机看文章
电路功能与优势


发生瞬变后,或者连接、断开或关断监控电路时,高端电流监控器可能遇到过压情况。图1所示电路使用具有过压保护功能、作为差动放大器连接的 ADA4096-2运算放大器来监控高端电流。 ADA4096-2具有输入过压保护功能,对于高于32 V及低于供电轨的电压,不会发生反相或闩锁。

图1. 具有输入过压保护的高端电流检测(原理示意图:未显示所有连接和去耦)

该电路采用可调低压差500 mA线性稳压器 ADP3336供电,如果需要,后者还可用于为系统其他器件供电。设置为5 V输出时,输入电压范围为5.2 V至12 V。为了省电,可通过将 ADP3336 SD 引脚置位低电平来关断电流检测电路,而电源(例如太阳能电池板)仍可工作。这将对未供电的 ADA4096-2的输入端施加电压,但在最高可达32 V的输入电压下不会发生闩锁或损坏。如果需要较低吞吐速率, AD7920 也可在样本间关断。 AD7920在关断时的最大功耗为5 µW,上电时为15 mW。在工作条件下, ADA4096-2仅需120 µA。工作电压为5 V时,功耗仅为0.6 mW。在关断模式下,ADP3336仅消耗1 µA。

图2. ADA4096-2原理示意图

电路描述

该电路是经典的高端电流检测电路拓扑结构,采用单个检测电阻。其他四个电阻(双通道1 kΩ/20 kΩ分压器)处于薄膜网络内(以实现比率匹配),用于设置差动放大器增益。这将放大检测电阻上产生的两个电压间的差异,并抑制共模电压:
VOUT = (VA – VB) (20 kΩ/1 kΩ)

图2显示了 ADA4096-2的原理示意图。输入级包含两个并行的差分对(Q1至Q4和Q5至Q8)。随着输入共模电压接近VCC- 1.5 V,Q1至Q4在I1到达最低顺从电压时关断。相反,随着输入共模电压接近VEE+ 1.5 V,Q5至Q8在I2到达最低顺从电压时关断。此拓扑结构可实现最大输入动态范围,因为放大器在供电轨外的200 mV下(室温)仍可处理输入。

与任何轨到轨输入放大器一样,两个输入对之间的VOS失配决定放大器的CMRR。如果输入共模电压范围保持在各供电轨1.5 V以内,输入对之间的跃迁便可避免,从而将CMRR改进约10 dB。

ADA4096-2输入可保护器件不受最高超出各供电轨32 V的输入电压偏移的影响。此特性对存在电源时序控制问题的应用特别重要,该问题可导致信号源在施加放大器电源之前活动。

图3显示通过低RDSON内部串联FET(绿色曲线)提供 ADA4096-2的输入电流限制能力,并与使用5 kΩ外部串联电阻和无保护的运算放大器(红色曲线)相比较。

图3. 输入电流限制能力

图3是 ADA4096-2采用单位增益缓冲器配置时的情况,其中将电源连接至GND(或±15 V)并对正输入扫描,直至输入超过电源达32 V。一般而言,输入电流在正过压条件期间限于1 mA,在负欠压条件期间限于200 µA。例如,在20 V过压条件下, ADA4096-2输入电流限于1 mA,从而提供等效于串联20 kΩ电阻的电流限制。图3还显示,无论是否为放大器供电,电流限制电路均有效。

请注意,图3仅代表异常条件下的输入保护。正确的放大器工作输入电压范围(IVR)见 ADA4096-2数据手册的表2至表4。

AD7920是一款12位、高速、低功耗逐次逼近型ADC,采用2.35 V至5.25 V单电源供电,最高吞吐量可达250 kSPS。该器件内置一个低噪声、宽带宽采样保持放大器,可处理13 MHz以上的输入频率。

转换过程和数据采集过程通过CS和串行时钟SCLK进行控制,从而为器件与微处理器或DSP接口创造了条件。输入信号在CS的下降沿进行采样,而转换同时在此处启动。该器件无流水线延迟。

AD7920采用先进的设计技术,可在下述高吞吐速率的情况下实现极低的功耗,若要进入关断模式,必须在SCLK的第2个下降沿之后、第10个下降沿之前的任意时间将CS变为高电平,以中断转换过程。一旦CS在SCLK的此窗口内变为高电平,器件即进入关断模式,CS下降沿所启动的转换终止,SDATA返回三态。如果CS在第2个SCLK下降沿之前变为高电平,则器件仍将处于正常模式,不会关断。这可以避免CS线上的毛刺引起意外关断。

若要退出这种工作模式并使 AD7920再次上电,需要执行一次伪转换。在CS的下降沿,器件开始上电,并且只要CS处于低电平便继续上电,直到第10个SCLK的下降沿之后。经过16个SCLK后,器件完全上电,下一次转换将产生有效数据。

如果CS在第10个SCLK下降沿之前变为高电平,则 AD7920再次返回关断模式。这可以避免CS线上的毛刺引起意外上电,或者CS位于低电平时8个SCLK周期意外爆发。虽然器件可以在CS的下降沿开始上电,但只要不超过第10个SCLK下降沿,便会在CS的上升沿再次关断。

有关时序的详情请参见 AD7920数据手册。

测试结果

衡量该电路性能的一个重要指标是最终输出电压测量结果中的噪声量。

图4显示了10,000个测量样本的直方图。该数据是利用连接到 EVAL-SDP-CB1Z系统演示平台(SDP-B)评估板的CN-0241评估板获得的。设置详情参见本电路笔记的“电路评估与测试”部分。

电源设置为3.0 V,不关闭LDO的输出,在250 kSPS的最大速率下采集10,000个数据样本。图4显示了采集结果。峰峰值噪声约为2 LSB,对应于大约0.3 LSB rms。

图4. 关断前10,000个样本的码字直方图

接着在软件中将连接至ADP3336的SD关断引脚置位低电平,从而关闭LDO输出。约1分钟后,再将ADP3336的关断引脚置位高电平,重新开启输出,并采集相同数量的数据样本。图5显示了采集结果。

图5. 关断后10,000个样本的码字直方图

上图显示,输入处于高电平时, ADA4096-2 的输出在关断期间并未闩锁。

常见变化

经验证,该电路能够稳定地工作,并具有良好的精度。该板同时兼容系统演示平台SDP-S控制板EVAL-SDP-CS1Z)。

图1所示电路稍作更改,便可针对最高达+30 V的输入电源电压监控电流。 ADA4096-2的+V引脚并未连接到 ADP3336的+5 V,而是直接连接到受监控的输入电源。在这种配置中, ADA4096-2直接采用输入电源供电。

电路评估与测试

本电路使用EVAL-CN0241-SDPZ电路板和 EVAL-SDP-CB1Z 系统演示平台SDP-B控制器板。这两片板具有120引脚的对接连接器,可以快速完成设置并评估电路性能。 EVAL-CN0241-SDPZ板包含要评估的电路,如本笔记所述。SDP-B控制器板与CN0241评估软件一起使用,可从 EVAL-CN0241-SDPZ电路板获取数据。

设备要求

 带USB端口的Windows® XP、Windows Vista®(32位)或Windows® 7(32位)PC
 EVAL-CN0241-SDPZ电路评估板
 EVAL-SDP-CB1ZSDP-B控制器板
 CN0241 SDP评估软件
 能够驱动6 V/1 A的直流电源
 能够驱动5 V/2.5 A的直流电源
 2 Ω/12 W负载电阻

开始使用

将CN0241评估软件光盘放进PC的光盘驱动器,加载评估软件。打开“我的电脑”,找到包含评估软件的驱动器。

功能框图

电路框图参见本电路笔记的图1,电路原理图参见“EVAL-CN0241-SDPZ-SCH-RevA.pdf”文件。此文件位于 CN0241 Design Support Package中。

设置

EVAL-CN0241-SDPZ电路板上的120引脚连接器连接到 EVAL-SDP-CB1Z控制器(SDP-B)板上标有“CON A”的连接器。应使用尼龙五金配件,通过120引脚连接器两端的孔牢牢固定这两片板。在断电情况下,将一个+6 V电源连接到板上标有“+6 V”和“GND”的引脚。如果有+6 V“壁式电源适配器”,可以将它连接到板上的管式连接器,代替+6 V电源。SDP-B板附带的USB电缆连接到PC上的USB端口。注意:此时请勿将该USB电缆连接到SDP-B板上的微型USB连接器。

当准备好采集数据时,开启5 V/2.5 A直流电源。对电压输出做出相应调节,以输出想要测量的电流量。
图6显示了CN0241 SDP评估软件界面的屏幕截图,图7显示了 EVAL-CN0241-SDPZ评估板的屏幕截图。有关SDP-B板的信息,请参阅SDP-B用户指南。

测试

为连接到EVAL-CN0241-SDPZ电路板的+6 V电源(或“壁式电源适配器”)通电。启动评估软件,并通过USB电缆将PC连接到SDP-B板上的微型USB连接器。

一旦USB通信建立,就可以使用SDP-B板来发送、接收、捕捉来自EVAL-CN0241-SDPZ板的串行数据。
当准备好采集数据时,开启5 V/2.5 A直流电源。对电压输出做出相应调节,以输出想要测量的电流量。
图6显示了CN0241 SDP评估软件界面的屏幕截图,图7显示了 EVAL-CN0241-SDPZ评估板的屏幕截图。有关SDP-B板的信息,请参阅SDP-B User Guide。

图6. CN0241 SDP评估软件界面

图7. 连接到SDP板的EVAL-CN0241-SDPZ评估板

CIRCUITS FROM THE LAB™实验室电路

 经过构建和测试可以确保功能和性能的电路设计。 
 借助ADI公司众多应用专业技术,解决了多种常见的模拟、RF/IF和混合信号设计挑战。 
 配有完备的文档,易于学习、理解和集成。

关键字:过压保护  电流检测电路 引用地址:具有过压保护功能的高端电流检测电路设计

上一篇:数字电视系统的常规场测方案及场测目的
下一篇:为什么传统测功机不能用于电动汽车电机试验

推荐阅读最新更新时间:2024-03-30 23:22

飞兆过压保护器件具有USB/充电器检测功能
     飞兆半导体公司(Fairchild Semiconductor) 为手机、移动音频、计算机和消费应用设计人员提供一款具有USB/充电器检测功能并高度集成的过压保护 (OVP) 器件FAN3989。该器件片内集成了FET并内置自动检测功能,可以侦测USB充电器的插拔,所有功能均集成于单片封装内。相比分立式实现方案,这类集成式自动检测功能更可以简化设计,省略外围电路,进而可以节约15% 到 20%的线路板空间。其过压保护功能是满足新兴安全标准的理想选择,这点对于手机应用尤为重要。        FAN3989可作为USB连接监控器件用以判断是否连接USB设备或电池充电器,它可以发送一个信号至系统控制器以指示系统USB充电器是
[电源管理]
激光器电源的过压保护电路
最简单的过压保护措施是由一只继电器组成,如图所示,一旦储能电容器上电压超过规定值时,继电器J吸合,进而切断供电电源.
[电源管理]
激光器电源的<font color='red'>过压保护</font><font color='red'>电路</font>
利用过压保护IC实现电池保护和切换功能
    为了尽可能延长电池的使用寿命,大多数便携式设备采用内、外两种供电模式:没有外部电源时采用设备自带的电池供电;当有外部电源接入时立即切换到外部电源。这样,就需要一套专门的电路来检测是否有外部电路接入,同时,还需要一套电路来控制电源切换开关。此外,目前越来越多的设备采用锂离子电池供电。锂离子电池具有能量密度高、无记忆效应等优点,但它的缺点也很明显,相比传统的镍镉、镍氢电池更为脆弱。锂离子电池对于过充、过放非常敏感,过度的充电和放电会严重影响其使用寿命。     因此,在一些高端设备所用的电池中,例如手机、笔记本等,都组装了一个保护板,对电池的充放电进行保护。但是,在一些中低端电池中,出于成本考虑制造商并没有加保护板,需要在
[电源管理]
利用<font color='red'>过压保护</font>IC实现电池保护和切换功能
高端电流检测的原理和电路
    摘要: 本文介绍低端、高端检流电路的结构和它们的应用。     关键词: 电流检测 限流 电流测量技术具有极为广泛的应用,许多系统中都需要检测流入、流出电流的大小。例如,电流保护/电流监测设备、4-20mA电流环系统、可编程电流源、线性/开关模式电源、以及需要掌握流入流出电流比例的充电器或电池电量计量器。由于很多应用是便携式的,因此电流检测电路还必须具有小体积、低功耗的特性。 高端/低端检流电路     低端检流电路的检流电阻串联到地(图1),而高端检流电路的检流电阻是串联到高电压端(图2)。两种方法各有特点:低端检流方式在地线回路中增加了额外的电阻,高端检流方式则要处理较大的共模信号。
[应用]
电流模式控制DC/DC转换器中的电流检测电路设计
    电流检测电路是电流模式控制所必需的, 通过检测功率开关管上的电流,然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号, 再与误差放大器的输出进行比较,从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种, 常见的有两种,一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流, 并联检测管复制比例电流的检测方法,又有两种主要的实现结构, 一种是采用运放的结构, 另一种是利用反馈的方式。如果采用运放, 显然会增加电路的复杂性,而且也会增加功耗。本文根据具有反馈控制电流源的原理来设计电流检测电路中的反馈网络。   1 反馈控制电流源的原理   电路原理图及电流源动态特性
[电源管理]
电流模式控制DC/DC转换器中的<font color='red'>电流检测</font><font color='red'>电路</font>设计
检流放大器的瞬态过压保护
这篇应用笔记介绍了保护低压电流检测放大器免受瞬态高压冲击的方法。这种情况在汽车电池供电应用中很常见,主要指抛负载情况。 有些电流检测放大器经常受到高压冲击,例如,在汽车中监测电池放电电流的检流放大器,必须能够承受高压抛负载脉冲,这个高压脉冲是当负载与电池断开时产生感应尖峰电压,最终在电机输出端出现一个高压脉冲。如果这个脉冲超过了放大器的共模电压,则必须提供附加的外部电路保护放大器。 图1给出了一个过压保护例子,由齐纳二极管Z1和Z2、电阻R1和R2以及二极管D1组成。MAX4372放大器的共模电压范围为0至28V,足以测量6V至18V范围的汽车电池电压。但是,抛负载电压可能达到35V,而且会持续0.5秒,恰好超过了放大器的30V
[电源管理]
检流放大器的瞬态<font color='red'>过压保护</font>
多层压敏电阻:紧凑耐用型过压保护
过压及相关联的高浪涌电流能损害甚至损坏电气和电子设备,因此,可靠的 过压保护必不可少。目前TDK集团基于一种新型陶瓷材料开发了一款高浪涌 系列多层压敏电阻,该系列电阻不仅尺寸紧凑,且具有卓越的保护性能。 影响电气设备的过压其产生有多种原因,能量等级也不同,并可通过不同的 途径引入。比如,根据IEC 61000-4-2测量的ESD脉冲主要影响通信设备的输入/输出,其中,测试等级为8 kV (接触放电)或15 kV(空气放电)。相关脉冲波形的特征是以纳秒为单位的电压上升,然而该脉冲的能量含量相对较低,仅为几个毫焦耳。 多层压敏电阻:紧凑耐用型过压保护 为了防止ESD事件发生,TDK集团提供了多种用于不同电压的小型CeraDiod
[半导体设计/制造]
安森美新的过压保护IC减少电路板空间40%
2008年11月21日 ,安森美半导体(ON Semiconductor)推出NUS6189新器件,将过压保护(OVP)电路的性能和功能、30 V P沟道功率MOSFET、低饱和电压(VCE(sat))晶体管和低导通阻抗(Rds(on))功率MOSFET集成到节省空间的一个 3.0 mm x 4.0 mm x 0.9 mm 封装之中。NUS6189设计用于保护敏感电子电路免受过压瞬态和电源故障影响。这器件经过优化,应用于使用外部交流-直流(AC-DC)适配器或车载充电器,如手机、便携式媒体播放器(PMP)和移动互联网设备(MID)。 NUS6189将保护便携设备通常需要的四种
[电源管理]
安森美新的<font color='red'>过压保护</font>IC减少<font color='red'>电路</font>板空间40%
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved