玩转示波器不是梦,掌握高保真捕获信号的6大原则

发布者:不见南师久最新更新时间:2016-09-06 来源: eefocus关键字:示波器  高保真  捕获信号 手机看文章 扫描二维码
随时随地手机看文章
安防电子行业快速发展,对测试测量的需求呈现快速增长的趋势。电子元件技术网和我爱方案网近期举办上,特别邀请罗德与施瓦茨公司德专家汪进进先生现场分享诀窍,让设计工程师们用好示波器,快速提高工作效率。

如何玩转示波器?汪进进的诀窍是掌握高保真捕获信号的6大原则!汪进进现场演讲PPT连同Bourns, Amazing,3CTest,新唐科技,Sunlord等专家的演讲资料都已上线,下载链接: 欢迎指导与互动。

安防电子在测试测量方面的需求呈现快速增长的趋势。大的安防电子公司,都在引进更高端的测试器设备。我今天分享的是每一位工程师每一天都要使用的工具示波器,可以称之为每一家公司的眼睛,是每一家公司刚性需求的仪器,怎么用才能用好呢?

其实不难,掌握高保真捕获信号的6大原则就能行!这6大原则中,有两条最重要,我总结成14个字原则,前7个字是最小化量化误差,后7个字是时刻警惕采样率。

示波器的本质是看电压识别时间变化的仪器,它的原理很简单,信号通过探头采集之后,经过放大、提高,离散化,最后显示给你看。横坐标的是时间,纵坐标是电压。这个是本质。所以我们测量的时候,要对横纵坐标进行区别。

示波器结构框图


第一个原则是最小化量化误差,尽量让波形占满栅格,充分利用ADC范围。

我们复习一下示波器的基本原理,把模拟信号变成影响点的各个。在数字空间里,永远都有0和1,每一个0和1代表的电压的大小是多少呢?通常是8位的0和1组成一个电压。电阻里的电源的电压是400伏,还是低压5毫伏,都可以进行量化。每一个0和1代表的电压是多少呢?这个是最小有利的比特位。特殊讲,就是示波器的每一个路径,示波器乘1111111,变成了11111110,最后一位从1变成0的跳变,代表了电压的大小是多少呢?是取决于平时用示波级的量程。如果示波器1伏每格的时候,你0和1的跳变大约是30毫伏的变化。这个是示波器外边的电压的变化,30毫伏的电压对示波器是没有影响的,示波器感觉不到。这个就像平时用1厘米的刻度尺来测量头发的时候发现无法测量,这个是基本的道理。

示波器是一个带有波形显示的电压表,当我们用一个万用表来测量电压的时候,如果测量是18毫伏的电压,量程是200伏的档位,测量是0.01伏,就是这个道理。所以在我们用万用表的时候,我们会下意识的用工程师的本能把量程拉小。示波角也是这个道理。测量电压的时候,我们有正选波,这个是1/2的话,这个放大之后就是我们说的误差。左边测的结果可能是100伏,右边可能是98伏,有时候差得会更大。

举个例子,当我们把示波器的探头和地上短路的时候,示波器放在全封闭的环境里,这个时候示波器的结果就是理论上的零伏电路。这个时候你测的电压,示波器测的结果的峰值是多少,示波器加上探头,探头短路,这个时候示波器的结果是多少?示波器的结果是取决于你的设置,可能是30伏,我想30伏可能很多人不相信,我刚好卖的10年的示波器,有一次我遇到了一个客户,他买了探头回去之后,探头一短路,就发现了30伏的值,老板有说要退货,我后来花半个小时给他解释原理,我说这个是原理问题,这个故事是经常发生的。

很多人觉得不可思议,为什么零伏的测试信号是30伏呢?就是这个原因。因为半导体的制作工艺的原因就是这里。当100伏/格的时候,正常测量的范围是800伏除以256,最终结果差不多是30。这个是高压测量的例子。所以平时用示波器测量电源的文波的时候,我们应该怎么做?如果是测量3.3伏的电流波,永远要把探头在地上的帽子拔掉,这个用短的地环。如果测1.8伏以下的电流波,纹波只有3豪伏以下的时候怎么做?勇敢要把探头拔掉。为什么?因为很多探头插上去之后,最小是1毫伏/格,直接就变成了10毫伏/格,你的示波器的量化、噪声,加上随机噪声,远远的大于你的被测信号的噪声,测量的结果就失去意义了。所以我们讲的第一个原则就是量化最小测量误差。

我们公司的示波器有什么特点?我们的高端的示波器上,有效的ADC的倍数可以达到7位,到这个指标的时候,如果不再做下面的阐述,下面就没有概念,刚才讲的示波器只有7位,其实大家知道一个示波器理论上是没有8位,对于一个20倍的示波器,可以做到5到6之间,很难做到6位。第一代的示波器,通常做到的指标是6位,而我们可以做到7位。因为我们是高级工程师,在示波器里面有非常多的积累。传统的示波器是10个G,但是实际上是由N个25兆的单个晶元的ADC合成的。我们公司花了8年的时间进入示波器的市场,我们设计出单核的芯片,达到了10个G,这个是不可思议的成就。所以我们可以实现位数是7位。

相同的情况下,我们的示波器比传统的示波器好一半,传统的可能是厘米的刻度尺,我们是毫米的刻度尺。

当我们测量一个信号,在不同采样情况之下,采样的结果误差特别大。采样率不够,就是你带宽不够,看到的是上面的滤波的效果,所以我们要时刻提出采样率,对于采样率而言非常著名人提出的定理,这个老先生告诉我们,采样率是信号的两倍,才能保证你的信号的准确率。采样率决定捕获信号的时间分辨率,时间分辨率越高,可以察看的波形细节越多,但可以捕获的时间窗口会下降。我的个人经历是取决于你想要采集什么样的信号,采集到什么程度。如果我测量的是发波,我就要看它的周期,你的采样率是6个点,可能误差只有1%。我们希望我们采的信号,感兴趣的细节可以采到3到5个点,最好是5个点,当然采更多点的意义就不大了。为什么采更多点意义不大呢?因为采样率乘采样时间,等于示波器的产品的深度,产品太大了,会消耗你很多的时间,单位时间采的点太多,这个波形时间就太短,所以一般建议采到3到5个点。

捕获的第三个原则,选择合适得带宽,并不是越高越好。

很多公司买示波器会考虑到未来3年的情况,我们平时用示波器的时候,适度的限制带宽,带宽是示波器的第一个指标。示波器带宽通常是指模拟带宽。

示波器的上升时间和带宽是一一对应的,所谓示波器的上升时间本身的指标,表示的是放大器的间接响应,就表示我对示波器趋于一个无限小、无限快的上升点。理论上来讲,是通过高斯的函数来推导出0.35的关系,就是带宽等于0.35乘以时间。因此带宽越高,上升时间越小。这个地方也是我们任何一个人参加过示波器的设计都知道的数据。实际测量的时间和正常的时间会存在这样的一个平方和的关系,这个会产生接近5%的误差。这个是非常有名的公示,这个是通过高斯来推导出来的。问题是我们任何时候都要考虑到性价比,因为示波器不是理想的仪器,示波器本身,以及示波器的探头,示波器本身有一个底照,探头是一个全照,和空间辐射耦合的方式,会感应很多的噪声,当示波器和探头感应了噪声信号的能量远远大于真正的被测的信号能量的时候,这个时候性价比太小,带宽越高,测的结果越差。这个就是很多公司代代相传告诉带宽要限制20兆的原因。测量一个3.15G的波形信号的时候,也是用这个,就是这个道理。因为我们知道任何一个信号都可以分解成N次谐波的叠加。所以我们看这个N等于多少的时候,你的带宽可以覆盖你信号能量的99.99%,当示波器的带宽已经可以覆盖99.99%的时候,你非要更高的带宽,这个时候就得不偿失了。因为我说了,当示波器本身的噪声远远高于信号能量的时候,要注意这一点。所以带宽并不是越高越好。

带宽选择依据

示波器的上升时间和带宽是一一对应的,所谓示波器的上升时间本身的指标,表示的是放大器的间接响应,就表示我对示波器趋于一个无限小、无限快的上升点。理论上来讲,是通过高斯的函数来推导出0.35的关系,就是带宽等于0.35乘以时间。因此带宽越高,上升时间越小。这个地方也是我们任何一个人参加过示波器的设计都知道的数据。实际测量的时间和正常的时间会存在这样的一个平方和的关系,这个会产生接近5%的误差。这个是非常有名的公示,这个是通过高斯来推导出来的。问题是我们任何时候都要考虑到性价比,因为示波器不是理想的仪器,示波器本身,以及示波器的探头,示波器本身有一个底照,探头是一个全照,和空间辐射耦合的方式,会感应很多的噪声,当示波器和探头感应了噪声信号的能量远远大于真正的被测的信号能量的时候,这个时候性价比太小,带宽越高,测的结果越差。这个就是很多公司代代相传告诉带宽要限制20兆的原因。测量一个3.15G的波形信号的时候,也是用这个,就是这个道理。因为我们知道任何一个信号都可以分解成N次谐波的叠加。所以我们看这个N等于多少的时候,你的带宽可以覆盖你信号能量的99.99%,当示波器的带宽已经可以覆盖99.99%的时候,你非要更高的带宽,这个时候就得不偿失了。因为我说了,当示波器本身的噪声远远高于信号能量的时候,要注意这一点。所以带宽并不是越高越好。

捕获的第四个原则,捕获待测信号的全貌,保证捕获信号的时间长度包含完整频率成分。

示波器的使用经过半个小时到一个小时的培训,可以少走弯路。我们过去几年测试的结果都是7、8微伏。过去怎么测都没有意义,都是错的,如果量程打到15亿秒/格,这个就是测量的现状。如果你的采样率没有打到250MS/S以上,这个时候结果也会偏小。所以测量纹波的时候,要保证打到250MS/S。为了你把电源纹波整体测出来,要看整个电源完整的包,这个是一个100赫兹的波,因为有220伏的交流电经过整流之后的波。所以220伏交流的变化,使闭环控制来源在前端不能完全遇到。如果是220伏变成400伏,整个的包看起来都不明显。但是零散而言,应该把完整的包看清楚。 

捕获的第五个原则,我们要尽可能减少探头的影响,主要是减少地线环路,同时要考虑到探头的负载效应。

示波器没有用好,很多时候都是因为探头的影响。探头里面的故事是非常多了,可以讲三个小时。因为时间的关系就不细说了。我想说的一个观点是任何一个测量的本质都是差度测量,这个观点大家都要记住,哪怕你拿出一个无源探头,这个地还是这个地,这个地只是我对探头分压的参考电。

示波器的去噪技术

其实把示波器递减掉,只是把示波器参考点放在你的机壳,示波器的电源有一个外电源,这个外电源是两个电源串联,中间接到220伏的,地减之后,示波器本身不是这个概念的地。但是很多时候因为示波器真正介入到插座上的地,不是概念上的地,很多时候再做一个接口会更好。任何的测量都是差度测量。因此我们要记住,所有问题都是线缆的问题。探头的问题解决几个问题,第一个是传导,第二个是辐射,这个是所有问题的本质。我们在使用的时候,要尽可能的减少地环的地,第二个是尽可能让探头远离辐射源和干扰源。还有一点,我们知道任何一个探头,我们希望输出电源越小越好,但是找不到这样的探头,一个探头可以达到10兆欧姆,但是交易质量非常多,测量结果非常大,因为会把电路拉宽。因为探头本质上是你的探头的等效电路,并联在电路上面,会吸收电,打垮电路。大家要注意这个影响。

探头的不同附件对测量的影响

捕获的第六个原则,利用测量统计功能,波形去噪算法。波形特别捕获模式:适应应用,要注意其优缺点。

关键字:示波器  高保真  捕获信号 引用地址:玩转示波器不是梦,掌握高保真捕获信号的6大原则

上一篇:谐波分析方法对比
下一篇:示波器测量易忽略的六大问题

推荐阅读最新更新时间:2024-03-30 23:23

示波器的触发方式有哪些以及代表什么含义
用视频的方式讲解了各个触发方式的原理以及用法,包括边沿触发、脉宽触发、逻辑触发、N边沿触发、欠幅触发、斜率触发、超时触发
[测试测量]
示波器电源纹波分析及测试
  一、什么叫纹波?   纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。   它主要有以下害处:容易在用电器上产生谐波,而谐波会产生更多的危害;降低了电源的效率;较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器;会干扰数字电路的逻辑关系,影响其正常工作;会带来噪音干扰,使图像设备、音响设备不能正常工作。   二、纹波、纹波系数的表示方法   可以用有效值或峰值来表示,或者用绝对量、相对量来表示;   单位通常为:mV   例如:一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量,即纹波系数=纹波电压/输出电压=10mv/12V
[测试测量]
虚拟示波器“虚”在哪里?
提到示波器,大部分硬件工程师,都会想到这些: 这种台式数字示波器,推翻并取代CRT显像管的模拟示波器的主导地位,已经几十年了。毫无争议地,在相当长的未来,它还会继续主导测量仪器市场,直到虚拟示波器崛起。 但是得承认,在很多专业领域,虚拟示波器无法取代台式的数字示波器产品,示波器厂商大佬们完全不用担心。 目前,虚拟示波器主要定位在零售价300~1000元左右的散客市场,避开了台式示波器的1500~几万元的市场。所以目前虚拟示波器和台式数字示波器的竞争冲突不严重,甚至还会互相补充。但是虚拟示波器的价格定位和手持式以及小屏幕的便携小示波器刚好竞争起来,这个后面会提到。 为什么叫虚拟示波器这个名字?虚拟并不是说这个示波器是
[测试测量]
虚拟<font color='red'>示波器</font>“虚”在哪里?
基于C8051F020的示波器监控程序设计
  设计采用高性能单片机C8051F020为控制芯片,监控示波器面板上40个按键、3个编码开关及4个电位器的状态。分别介绍了键盘、编码开关和电位器的工作原理,以及其与单片机连接的硬件电路及软件编程的实现。按键部分采用一键多义的键盘程序设计方法,给出了键码匹配子程序流程图。   监控程序负责系统中全部硬件和软件资源的分配、调度工作,它提供用户接口,使用户获得友好的工作环境,是系统设计中一个重要组成部分。   1 C8051F020单片机概述   伴随着电子技术快速的发展,越来越多的人加入电子开发的大军。在学习电子技术和研发项目的过程中,避免不了要使用一些仪器,例如万用表、示波器等等,然而对于一些非专业的爱好者,拥有一台数字示波器是比
[测试测量]
基于C8051F020的<font color='red'>示波器</font>监控程序设计
为什么测量当前值与平均值相差很大?
测量统计开始时,倘若探头还没放在测试点上,或者接触不良,或者测试点的电压还不稳定,就会导致当前值跟平均值的测量结果有较大的差异。 ZDS2022示波器进行参数自动测量时,带有统计功能,在打开参数测量功能时就开始统计,如图7.1所示,其测量结果统计了40次。 如果出现上述当前值与平均值差异较大的情况,读数时取平均值,就会引起很大的误差。这时应该按下【Clear】键,将统计数据清零,重新统计。这样,就可以避免上述情况引起的测量误差。
[测试测量]
示波器存储深度解读
存储深度(Record Length)也称记录长度,它表示示波器可以保存的采样点的个数。存储深度如果为“20000个采样点”则一般在技术指标中会写作“2Mpts”(这里的pts可以理解为“points”的缩写)或2MS(这里的S也可以理解为“samples”的意思)。 存储深度表现在物理介质上其实是某种存储器的容量,存储器容量的大小也就是存储深度。示波器采集的样点存入到存储器里面,当存储器保存满了,老的采样点会自动溢出,示波器不断采样得到的新的采样点又会填充进来,就这样周而复始,直到示波器被触发信号“叫停”,每“叫停”一次,示波器就将存储器中保存的这些采样点“搬移”到示波器的屏幕上进行显示,这两次“搬移”之间等待的时间被称为“
[测试测量]
怎么使示波器信号安稳下来?
榜首,旋转“LEVEL”触发电平旋钮,使“TRG LED”指示灯亮起来,代表此刻的触发条件契合。 第二,按下“SOURCE”触发源挑选按钮,使屏幕右下角呈现 CH1 或许 CH2 象征。详细以哪个为好,可视哪个挑选下信号较安稳而挑选。 第三,按下“SLOPE”触发极性挑选按钮,使屏幕右下角呈现相似 f 的象征。 第四,按下“COUPLING”触发耦合按钮,使屏幕右下角呈现 AC 。 第五,查看探头的夹子是不是夹好,保证接点是接好的。
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved