微电流的测量方案

发布者:cwm6269310最新更新时间:2016-09-21 来源: dzsc关键字:微电流  测量方案 手机看文章 扫描二维码
随时随地手机看文章
1 引言

 

实际测量时,噪声和干扰无法回避,影响了测量的灵敏度和准确性。以研究测量pA级电流为目的,开发设计出准确度为0.5级的微电流测量仪,测量的最小范围为10 pA。对于pA级电流测量,测量电路无法直接捕获电流信号,需要进行I/U转换。对于转换后的电压信号需进行进一步的放大,否则会被运算放大器的失调电压、偏置电流这些直流信号干扰。问题在于,在放大捕获待测信号的同时,工频干扰、噪声、电路失调等杂质信号也同时被放大,所以需要设计出相关的后续电路加以过滤、去除。对于工频干扰,通过采取屏蔽、滤波即可。而对于电路失调等这些直流杂质信号的消除,是本文所要阐述的核心所在,即通过采用调制电路、差分电路过滤掉这些杂质直流信号。

 

2 微电流测量方法概述

 

2.1 测量方法

 

微弱信号检测就是要从信号源中过滤掉干扰信号,增强/最大限度地还原有用的待测信号,提高信噪比(SNR),有效抑制噪声是微电流测量的难点和重点。新的微电流检测方法的提出及微电流测量仪的研制是目前该领域内的一大热点。就检测方法而言,目前主要有:取样积分法、相关检测法、噪声分析法、调制解调法、小波变换法、高阻抗输入法、光电耦合法、集成运放、计算机程序控制等,但取样电阻法和运放反馈电流法是微电流测量常用的方法。

 

噪声干扰是一种有效的压制性干扰信号,根据噪声的种类和特点,主要有2大来源:1)来自电子系统内部固有噪声,包括运放的偏置电流、失调电压,电子元件发热产生的热噪声,数字电路干扰产生的脉冲式噪声,开关电路产生的尖峰噪声等;2)来自电子系统外部,诸如工频干扰、射频噪声、大气噪声、机械噪声等。测量中,对噪声的处理极其重要,该文提出,微电流测量的关键在于抑制电路杂质直流信号和工频干扰。

 

2.2 微电流测量技术发展现状

 

美国吉时利公司利用在灵敏电流测量仪器上的技术优势,已经开发出6482型双通道皮安表/电压源,测量分辨率高达1 fA,6位半,测量范围2 nA~20 mA。

 

3 设计理论

 

3.1 微电流一电压转换原理

 

由戴维南定理可知,任何一个两端网络都可看成一个等效电压源Us与等效电阻Rs串联,即Rs=Us/Is。运放反馈电流法测量原理如图1所示。

 

 

图1运放反馈电流测量法原理
图1运放反馈电流测量法原理

 

图中:Rf为反馈电阻;R'为平衡电阻;UI0为运放失调电压;Ib-、Ib+为运放偏置电流;Is为待测微电流;Uo为输出电压。

 

理想电路输出为Uo= - IsRf。由于运放存在失调电压、偏置电流,所以,实际电路输出为:

 

U'o= - IsRf+UI0+Ib+R'+Ib-Rf (1)

 

电压输出误差为:

 

△Uo=UI0+Ib+R'+Ib-Rf (2)

 

 

 

3.2 差分、调制电路原理

 

提出运用差分、调制电路过滤掉电路中直流杂质信号的测量方法,彻底消除微电流测量过程中测量仪器本身电路产生的干扰。差分、调制是指调制开关由中央处理器控制,对微电流进行调制,通过采用调制电路、差分电路过滤掉这些杂质直流信号,得到与待测信号成比例关系的微压信号。差分、调制电路原理如图2所示。

 

 

图2 微弱电流差分、调制前置放大器模型
图2 微弱电流差分、调制前置放大器模型

 

当K1断开,K2闭合,即输出:

 

U01= IsRf+UI0+Ib+R'+Ib-Rf (3)

 

当K1闭合,K2断开,即输出:

 

U02= UI0+Ib+R'+Ib-Rf (4)

 

式(3)减式(4),即可消除系统误差,即:

 

Uo=U01- U02= IsRf(5)

 

通过式(5)得知,直流杂质信号被消除,可见,Uo与Is成正比。但Uo信号极其弱,Uo需要经过层层放大,再进行差分。设总的放大倍数为K,则输出为:Uo=KIsRf;被测微电流为:

 

Is=Uo/(KRf) (6)

 

测量结果送往仪器的中央处理器,最后通过显示电路显示出来。

 

4 系统设计

 

4.1测量电路构成

 

本测量电路由3部分组成。

 

1)前置放大阶段,对信号进行调制放大,同时将微电流信号转化成微压信号;

 

2)信号放大阶段,分别由低通滤波电路、调零电路、开关选择电路、状态判别电路构成;

 

3)微电流输出,由采样保持、差分电路等构成,由调制开关对放大后的电压信号分别进行采样保持,通过差分电路去除系统误差,最后输出与被测微电流成正比的电压信号。测量电路构成如图3所示。

 

 

图3测量电路系统构成
图3测量电路系统构成

 

 

 

4.2 第1级放大电路原理

 

放大过程分为8小级(V1~V8)完成,框图由上至下,逐渐放大如图4所示。前置放大电路输出的微压信号在第l级进行放大时,由中央处理器控制放大级数。级数的确定先由多路开关依次闭合,由状态判别电路做出判断,当输出信号首次超过运放工作的线性范围时,级数倒退1级,并送往中央处理器。为避免工频干扰信号数次被放大,每级放大电路都设置低通滤波器。调零电路设置在放大电路的末级,以避免测量电路本身失调信号被数次放大后,可能超出其工作的线性范围。

 

 

图4第1级放大电路原理
图4第1级放大电路原理

 

 

4.3 第2级放大电路原理

 

共分4级放大,每级放大倍数不宜过大,以不超过运放的饱和电压且输出信号最大为准,如图5所示。

 

 

图5 第2级放大电路原理
图5 第2级放大电路原理

 

 

依据调制开关的不同时态,将信号放大阶段输出的结果存储在2个寄存器中,利用差分电路,使得前置放大电路,主放大电路中伴随着的杂质直流信号得以消除。

 

4.4 状态判别电路原理

 

采用供电电源为3 V的前置放大电路,J/U转换后的信号输出给1号状态判别电路,由判别电路做出判断将结果送至中央处理器;中问主放大电路均采用电源为15 V的运算放大器,电路输出给2号状态判别电路,将结果送至中央处理器如图6所示。

 

 

图6状态判别电路原理
图6状态判别电路原理

 

 

 

5 安装注意事项

 

除电路结构设计外,在元器件选择、电路安装及工艺上也要采取一定的措施。为达到pA级微电流测量,必须注意以下几点:

 

1)为了尽量避免干扰,应将输入接线端用屏蔽环完全环绕,并将屏蔽层与外壳、衬底及信号地连接口],将保护环设置在印刷板的正反两面。

 

2)电路的各条回路都应以地作为电流返回的通道,鉴于地线上的阻抗不是零而形成电位差,地线与信号线间的电容耦合会进一步增加噪声干扰,因此,要尽量设置少的接地点或减小接地点间的距离。

 

3)PCB布线时,要注意各种器件的摆放,每个芯片必须配置去耦电容,功率大的元器件要求靠近电源位置,尽量减小电线长度,在电源和放大器的输出部分大面积敷铜。在进行线路板的走线时,先走地线及电源线

 

6 试验仿真

 

6.1 工频干扰试验

 

工频噪声可以通过空间辐射、传导进入,通过对测量仪器加装金属屏蔽层,测试者手接触仪器外壳时,测试电路输出波形如图7所示;撤掉金属屏蔽层,测试者手接近仪器外壳时,测试电路输出波形如图8所示,从两图对比中可以看出50 Hz噪声得到有效抑制。

 

 

图7屏蔽时电路输出波形
图7屏蔽时电路输出波形

 

图8无屏蔽时电路输出波形
图8无屏蔽时电路输出波形

 

 

6.2 验证调制采样电路、差分电路的有效性

 

为过滤掉电路失调等直流杂质信号,采用调制电路、差分电路。为验证电路的有效性,用示波器分别测量采样保持输入端波形和差分电路输出端波形,如图9所示。很明显,直流杂质被有效过滤。

 

 

图9差分电路后输出波形
图9差分电路后输出波形

 

 

 

6.3 测试数据

 

测试数据,如表1所示不同值的5次测量结果。

 

 


 

 

对于100 pA,测量平均值:

 

=100.156 pA,测量误差为0.16%,测量重复性s=0.24 pA;

 

对于10 pA,测量平均值:

 

=9.993 pA,测量误差为- 0.07%,测量重复性s=0.04 pA。

 

测量准确度、重复性达到预期目的,符合0.5级要求。

 

7 结论

 

随着电子测量技术的进一步发展,pA级别的电流测量在众多领域具有极其重要的地位,微电流测量极易受到环境条件和测量仪器自身噪声的影响。依据提出的测量方法设计的测量仪器经高、低温、电磁干扰等试验,对于10 pA电流,仪器准确度可达0.5级,具有较高的准确度和较好的测量重复性、稳定性。试验数据表明,去除工频干扰和直流误差的影响是减小微电流测量误差的主要因素。

关键字:微电流  测量方案 引用地址:微电流的测量方案

上一篇:PWM电路自动测试系统设计方案
下一篇:输入功率和RMS电流测量解决方案

推荐阅读最新更新时间:2024-03-30 23:24

测量多种温度传感器及数字方式输出应用方案
多传感器高准确度数字温度测量系统 LTC2983,可测量多种温度传感器并以数字方式输出结果 (采用 ºC 或 ºF 为单位),具有 0.1ºC 的准确度和 0.001ºC 的分辨率。今天我们要讲的是 LTC2983 为何能够测量 18 个两线式 RTD? 单个 LTC2983 温度测量器件能支持多达 18个两线式RTD探头(如图 1 所示)。每个 RTD 测量包含同时检测由于电流 IS 而在 RSENSE 和 RTD 探头RTDx 两端所产生的两个电压。对每个电压进行差分检测,而且鉴于 LTC2983 拥有高共模抑制比,因此堆栈中 RTD 的数量并不会对个别测量产生不利影响。 图1 LTC2983 可支持 18 个 RTD
[模拟电子]
大型综合测量检测工具设计方案
本方案为国内汽车制造单位,汽车零部件尺寸测量,基于接触式测量及精密机械传动技术。 一. 测量原理 1.被检测零部件图纸 2.设计要求: 1、高精度尺寸:达到±0.023 2、接触点:基准测量点 3、检具要求:为在线生产全检使用 3.原理 采用两个顶尖,把工件顶起定位,另用一个测量头为钢球对工件进行检测,由百分表(或千分表)进行读数,另配一个标准件,其读数与标准件进行比较,即可得到测量值。测量头采用精密导轨滑动。 检测工具三维图例: 二. 应用领域 轨道交通、军工、航空航天、重工船舶、汽车制造、 机床 模具 、加工设备制造等装备制造业。
[测试测量]
大型综合<font color='red'>测量</font>检测工具设计<font color='red'>方案</font>
功耗双运算放大器仅需20 μA电流,同时提高测量精度
-- AD8506运算放大器仅需20 μA电源电流,同时为便携式应用提供高线性度以提高测量精度 关于AD8506 AD8506带R-R输入和输出特性的低功耗CMOS双运算放大器适合于便携式应用,包括电池供电病人监监器、遥感器、手持仪器和其它要求低电压、低功耗、精密测量的移动设备。AD8506凭借器创新电路的体系结构,由于在其电源供电和输入期间一直具有最低失真特性所以保持很高的线性度。AD8506具有的105 dB电源抑制(PSR)能力能够在电池工作期间使电源电压变化引起的误差最小,从而使其非常适合电池供电应用。另外,AD8506具有的105 dB共模抑制(CMR)能力能够使R-R输入特性运算放大器经常遇到的共模电压引起的失真
[新品]
采用555定时器和单片机的RC测量系统设计方案
本文介绍了一种基于555定时器和单片机的数显式电阻和电容测量系统设计方案。该系统利用555和待测电阻或电容组成多谐振荡器,通过单片机测量555输出信号的周期,根据周期与待测电阻或电容的数学关系计算出电阻或电容值,再将之在LCD1602上显示出来。最后仿真结果表明该测量系统具有结构简单,方便实用等优点,能够测量一定范围内的电阻和电容值。 1.引言 在电子仪器、仪表的制造及使用行业,有大量的印刷电路板需要调试、测量与维修,需要对电阻电容的数值进行测试。 本文介绍了一种基于AT89C51单片机和555定时器的数显式电阻和电容测量系统设计方案,然后制作出电路实物,实现系统的功能。系统利用555定时器和待测电阻(或电容)组成多谐振荡器,通过
[单片机]
采用555定时器和单片机的RC<font color='red'>测量</font>系统设计<font color='red'>方案</font>
一款基于万用表组建的高精度温度测量设计方案
虽说温度测量在各种工业现场分布十分广泛,但是能实现精确和快速的温度测量十分困难。其实现之难点有:温度信号本身并不像一般的物理信号那么容易直接检测,而且温度测量数据都是要通过数字形式保存或记录的,这样又涉及到了传感器技术、精确测量和数据处理等技术,使得温度测量难度加大。本文通过介绍利用RIGOL的台式万用表DM3068为工程师们提供了一种便捷、精确的解决方案。 系统结构 温度测量系统主要由三部分组成:温度传感器(用于将温度变化转换为电压/电阻的变化)、测量部分(测量电压/电阻信号)、计算和转换部分(将测量的电压/电阻值转换为温度值)。其中,温度传感器已经形成工业标准化的产品,只需要选择适合应用的产品即可。余下的两个部分,则可以直
[测试测量]
一款基于万用表组建的高精度温度<font color='red'>测量</font>设计<font color='red'>方案</font>
一种无电解电容LED驱动方案中输出功率的测量
 LED灯珠作为一个半导体器件,其寿命长达50,000小时以上。而LED照明驱动方案中普遍用到电解电容,其寿命则仅为5,000~10,000小时。这样电解电容的短寿命与LED灯珠的长寿命之间有一个巨大的差距,削弱了LED的优势。因而无电解电容LED驱动解决方案受到市场青睐。   美芯晟科技推出了基于MT7920的无电解电容LED驱动解决方案(见图1)。在该方案中,在全桥堆之后,采用容值较小的CBB高压陶瓷电容或薄膜电容取代了高压电解电容,去掉了电解电容,同时也提高了功率因子(PFC,在85VAC~265VAC范围可以全程高于0.9)。而输出电容C8和C9可以用陶瓷电容替代电解电容。从而实现了完全无电解电容。  
[电源管理]
一种无电解电容LED驱动<font color='red'>方案</font>中输出功率的<font color='red'>测量</font>
矢量网络分析方案-以独特的设计满足网络分析测量的需要
脉冲S参数测量 ZVA提供了全套的脉冲S参数测量功能,包括了平均脉冲测量 (Average Pulse) 、脉内点测量 (Point in Pulse) 及脉冲包络测量 (Pulse Profile) 。ZVA提供了独特的高选择性中频滤波器技术 (High Selective Filter) ,避免了在平均脉冲测量中谱域调零的过程。ZVA提供了30 MHz的中频带宽,12.5 ns时间分辨率,可支持极窄脉宽的脉冲包络测量。 矢量混频器测量 ZVA提供了矢量混频器测量功能,可直接测量得到混频器的变频损耗与相位参数。采用UOSM校准方法,校准滤波器为互易即可,无需其他参数;内置第二个源可提供本振信号;可同时测量反射与传输参数。
[测试测量]
矢量网络分析<font color='red'>方案</font>-以独特的设计满足网络分析<font color='red'>测量</font>的需要
采用LabVIEW的近红外测量方案
近红外谱区(1)是指位于可见谱区与中红外谱区之间的一段电磁波谱,即介于780-2526nm的光区。近红外光谱(Near-infrared Spectroscopy, NIRS)可划分为短波长近红外波段和长波长近红外波段,其波段范围分别为780-1100nm和1100-2526nm。由于频率较高,NIR谱区分子对其吸收主要是分子振动的倍频与合频吸收。NIRS分析技术是通过被分析物质中的含氢基团,如OH、CH、NH、SH、PH等在近红外区域内表现有特征吸收,利用计算机技术及化学计量学方法,对扫描测试样品的光学数据进行一系列的分析处理,最后完成该样品有关成分的定量分析任务。由于它具有不破坏样品且快速、准确等优点,是20世纪90年代以来发
[模拟电子]
采用LabVIEW的近红外<font color='red'>测量</font><font color='red'>方案</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved