某工控设备开发厂商的设备中采用单片机控制电路,单片机使用外接的两脚晶体振荡器产生11.0592MHz的工作时钟。用户希望能够精确测量工作时钟的频率,但用示波器测量时一方面测不准,另一方面测量时还会出现晶体停振的情况,对于这种晶体的频率测量有没有好的办法呢?
在分析晶体停振原因前,先要了解不同振荡器的区别。一般来说,晶体振荡器分为无源晶振和有源晶振两种类型。
无源晶振一般称为crystal(晶体),由石英晶体按照特定角度和尺寸切割而成,其本身相当于一个高Q值得选频电路,需要借助外部谐振和反相器提供能量才能起振。
而有源晶振则叫做oscillator(振荡器),其内部除了晶体以外,还包含了起振和驱动电路。下图是有源晶振的结构原理,可见其内部包含了谐振和输出端(Fout)的驱动电路。有源晶振由于驱动能力强,通常不会在测量中造成停振,会造成停振的通常都是晶体。
出于成本的考虑,很多单片机采用类似下面的晶体谐振电路,通过晶体和并联的起振电容振荡出需要的工作频率。一般示波器标配的无源探头的寄生电容会在10~15pf左右,这样在测量时探头的电容并在谐振回路上会改变原振荡电路的电容值从而造成晶体停振。
对这种没有经过驱动的晶体振荡器的频率测量有没有好的方法呢?答案是当然有,但一方面要减小探头的负载,另一方面要能实现准确的频率测量。
一般无源探头的寄生电容都比较大,为了减小寄生电容,可以使用有源探头,有源探头的寄生电容通常在2pf以下,对于被测电路的影响比较小。另外,一般示波器都是基于周期测量结果反算频率,测量误差比较大,频率计测量频率是最精确的,但是又没有办法直接连接示波器的有源探头,所以最好使用内置频率计功能的示波器。
以下是进行晶体频率测量时建议的测试步骤:
1、选择寄生电容较小的有源探头。由于用户要测试的信号频率不高,选择1GHz左右带宽的有源探头就足够用了,以下是两款典型的单端有源探头的主要指标,其寄生电容只有1pf左右。
2、选择有内置频率计功能的示波器。有些示波器内置的频率计分辨率可以达到5位,连接外部10MHz的参考时分辨率可以达到7位。为了提高测量精度,可以从其它比较精准的信号发生器、铷钟或者频率计上引一个10MHz的参考信号送到示波器的外参考时钟输入端,并设置示波器使用外部参考时钟。
3、通过示波器探头连接被测信号,并在示波器上开启频率计数的测量功能。下图是用一款带内置频率计功能的示波器配合有源探头对晶体振荡器频率的测量结果,可以看到,这种方法可以提供到ppm级别的测量分辨率(具体精度取决于外参考时钟的频率精度),并且避免了由于探头寄生电容对于被测电路的影响。
关键字:测量 晶体停振
引用地址:
测量引起晶体停振怎么办?
推荐阅读最新更新时间:2024-03-30 23:33
OLED产业全面发展,准确测量是关键
一则2018年iPhone手机将全部采用OLED的消息,让OLED在今年上半年火了一把。OLED被称为是下一代显示技术,目前在手机面板的应用上的市占率也越来越高。由于OLED有机电致发光显示技术具有自发光、无需背光、低压驱动、响应快、视角宽、发光面均匀等一系列优点,在各种显示技术中优势明显,目前备受市场关注,无论是在显示领域还是照明领域,OLED都被视为引发新一轮产业革命的新力量。 典型OLED手机 不同OLED的亮度差异极大,OLED的光通量测试对积分球内壁的涂层反射率以及光谱仪的动态范围要求比较高。 英国豪迈子公司蓝菲光学的光测量系统可以提供多款积分球涂层以及光谱仪选项,涂层的漫反射率最高可达99%,具有极佳的朗伯特性
[电源管理]
拥抱混频器杂散分量的正确测量姿势与设计窍门
在混频过程中,混频器在其输出端上产生的并不只是所期望的信号。位于输入和 LO 频率之整数倍上的其他无用信号也会出现在混频器的所有端口上。这些寄生信号接着又相互混频并离开混频器的输出端口而进入信号链路的其余部分。此类不希望有的输出信号被称为 “杂散脉冲”。假如这些杂散脉冲的功率足够高,那就会在射频设计中引发很多问题,例如:发送器中相邻通道的污染、接收器中的灵敏度损失、或期望信号自身的失真。视系统要求的不同,有多种处理此类问题信号的方法。谨慎的频率规划和滤波虽然能够有助于大幅度减少杂散脉冲的数量,但是它们总是会有。因此,系统设计师必需在混频器输出端上准确地测量杂散电平,以确定怎样用最佳的方式应对它们,这一点是很重要。 测量混频器杂
[网络通信]
传统眼图参数测量的局限解析
眼图参数,特别是眼高和眼宽,经常造成工程师的困惑,针对眼高眼宽以及其他像1电平、0电平等眼图参数的算法并不是通用的,因为他们假设眼图垂直片段上的电压分布很好的拟合高斯分布。对于光信号,这是一个很好的假设。实际上,眼图参数最初就是定义用在光信号上的,没有考虑ISI等信号完整性的影响,通过电路板和互联器件传输的串行信号的眼图片段通常不是高斯分布的。这样测试出来的眼高眼宽的结果可能不会返回正确的结果,这篇文章针对眼高测量,讨论为什么会发生这种状况,并且给读者避免这种状况的建议,相似的分析适用于眼宽,但是不在这篇文章中讨论。 眼图参数的算法基于高斯模型,使用眼图中心的3sigma来定义眼高和眼宽。描述光信号眼图时,这种算法工作的很好。
[测试测量]
车载姿态测量系统的开发
汽车运动状态信息的测量和采集是汽车操纵稳定性研究和设计的基本问题,也是实现汽车电子控制及辅助驾驶系统的必要条件。这就需要一种具有足够精度和置信度的、快速的、操作简便的和适用范围广的测量汽车运动状态的方法 。本文研究设计了一种基于可编程逻辑阵列(FPGA)的捷联式车载汽车姿态实时测量系统。此系统具有体积小、使用方便、成本低廉等优点。
1 系统组成
本系统主要由传感器组模块、数据采集卡、便携式计算机、电源等组成,系统硬件如图1所示。
1.1 微惯性测量单元(MIMU)
自主设计的微惯性测量单元。由2个ADXL203型双向加速度计和3个ADXRS150型角速度陀螺组成,要求3个角速度陀螺安装在3个正交平面上,其
[嵌入式]
基于LM3S101处理器的温度测量模块设计
温度信息是各类监控系统中主要的被控参数之一,温度采集与控制在各类测控系统中应用广泛。随着处理器技术的发展,在温度测量领域,ARM处理器以其高性能、低成本得到了广泛应用。以Luminary公司生产的32位ARM处理器LM3S101为核心,以热敏电阻为温度传感器,并通过引入RC充放电电路以及对热敏电阻测温曲线的分段线性化处理,实现了一种成本低、测温精度高的温度测量模块设计方案。经实际测量实验,这种设计方案在整个测温范围内能够达到较高测温精度,且模块通用性强、成本低且应用广泛。 1测温模块硬件原理 1.1温度信息的获取 实现温度的检测需要使用温度传感器。温度传感器种类很多,热敏电阻器是其中应用较多的一种,具有灵敏
[测试测量]
测量SiC MOSFET栅-源电压时的注意事项
SiCMOSFET具有出色的开关特性,但由于其开关过程中电压和电流变化非常大,因此如Tech Web基础知识 SiC功率元器件“SiC MOSFET:桥式结构中栅极-源极间电压的动作-前言”中介绍的需要准确测量栅极和源极之间产生的浪涌。找元器件现货上唯样商城在这里,将为大家介绍在测量栅极和源极之间的电压时需要注意的事项。我们将以SiC MOSFET为例进行讲解,其实所讲解的内容也适用于一般的MOSFET和IGBT等各种功率元器件,尽情参考。 测量SiC MOSFET栅-源电压:一般测量方法 电源单元等产品中使用的功率开关器件大多都配有用来冷却的散热器,在测量器件引脚间的电压时,通常是无法将电压探头等直接安装到器件引脚上的。因此
[测试测量]
单片机中最小二乘方滤波器的向量测量和功率计算
摘要: 提供了一种每周波四点采样的最小二乘方滤波器,通过整型变换和查表求根等优化算法,可在单片机中实现相量的快速测量。分析了滤波器中相量的相位关系,并提供了两线制功率的计算方法。
关键词: 最小二乘方滤波器 向量 单片机 功率
目前,以单片机为基础的数字式电气测量、保护装置已成为主流形式。交流信号直接采样也已成为一种普通的方法。快速傅立叶算法是其中的主要算法,而最小二乘方算法,计算量很大,特别是在单片机的处理能力有限的情况下,既要保证实时性,又要保证计算速度,不经过精心设计和程序优化,很难保证二者的统一。
通过减少采样次数、使用每周滤四个采样点拟合的滤波器和一套优化措施,使该算法计算速度大大
[工业控制]
R&S庆成立75周年挑战微波测试与测量极限
1. R&S中国与Signalion合作在中国推广LTE技术标准测试 罗德与施瓦茨中国有限公司与德国Signalion公司签约在中国独家代理Signalion公司的用于LTE基站(eNB)测试的LTE仿真终端。 罗德与施瓦茨公司作为全球领先的测试与测量仪表厂商,与作为第一家推出LTE仿真终端的厂商Signalion公司签约,由R&S公司独家在中国代理Signalion公司的用于基站(eNB)测试的LTE仿真终端。根据代理协议,R&S中国除了负责Signalion产品的市场工作之外,还负责有关技术支持、产品维护、及售后维修工作。R&S公司在全球率先推出了LTE-FDD和TD-LTE的信号源,信号分析仪以及LTE终
[测试测量]