示波器常用术语解释

发布者:EternalWhisper最新更新时间:2017-11-06 来源: 21ic关键字:示波器  常用术语 手机看文章 扫描二维码
随时随地手机看文章

1、带宽:指的是正弦输入信号衰减到其实际幅度的70.7%时的频率值,即-3dB点(基于对数标度)。本规范指出示波器所能准确测量的频率范围。带宽决定示波器对信号的基本测量能力。随着信号频率的增加,示波器对信号准确显示能力将下降。如果没有足够的带宽,示波器将无法分辨高频变化。幅度将出现失真,边缘将会消失,细节数具将被丢失。如果没有足够的带宽,得到的关于信号的所有特性、响铃和振鸣等都毫无意义。

▲5倍准则(示波器所需带宽=被测信号的最高频率成分Х 5)使用5倍准则选定的示波器的测量误差将不会超过±2%,一般已足够了。然而,随着信号频率的增加,这个经验准则已不再适用。带宽越高,再现的信号就越准确。

2、上升时间:在数字世界中,时间的测定至关重要。在测定数字信号时,如脉冲和阶跃波可能更需要对上升时间作性能上的考率。示波器必需要有足够长的上升时间,才能准确的捕获快速变换的信号细节。

▲示波器上升时间=被测信号的最快上升时间+5上升时间描述示波器的有效频率范围,选择示波器上升时间的依据类似于带宽的选择依据。示波器的上升时间越快,对信号的快速变换的捕获也就越准确。

3、采样速率:采样速率表示的是示波器在一个波形或周期内,采样输入信号的频率。表示为样点数每秒(S/S)。示波器的采样速率越快,所显示的波形的分辨率和清晰度就越高,重要信息和事件丢失的概率就越小。如果需要观测较长时间范围内的慢变信号,则最小采样率就变得较为重要。

计算采样速率的方法取决于所测量的波形类型,以及示波器所采用的信号重构方式。为了准确的再现信号并避免混淆,奈奎斯特定理规定,信号的采样速率必需不小于其最高频率成分的两倍。然而,这个定理的前提是基于无限长时间和连续的信号。由于没有示波器可以提供无限时间的记录长度,而且从定义上看,低频干扰是不连续的,所以采用两倍于最高频率成分的采样速率是不够的。实际上,信号的准确再现取决于其采样速率和信号采样点间隙所采用的插值法。

▲在使用正弦差值法时,为了准确再显信号,示波器的采样速率至少需为信号最高频率成分的2.5倍。使用线性插值法时,示波器的采样速率应至少是信号最高频率成分的10倍。

4、波形捕获速率:是指示波器采集波形的速度。所有的示波器都会闪烁。也就是说,示波器每秒钟以特定的次数捕获信号,在这些测量点之间将不在进行测量。这就是波形捕获速率,表示为波形数每秒(wfms/s)。波形捕获速率取决于示波器的类型和性能级别,且有着很大的变化范围。高波形捕获速率的示波器将会提供更多的重要信号特性,并能极大的增加示波器快速捕获瞬时的异常情况,如抖动、矮脉冲、低频干扰和瞬时误差的概率。

5、记录长度:表示为构成一个完整波形记录的点数,决定了每个通道中所能捕获的数据量。由于示波器仅能存储有限数目的波形采样,波形的持续时间和示波器的采样速率成反比。

6、触发能力:示波器的触发功能在正确的信号位置点同步水平扫描,决定着信号特性是否清晰。触发控制按钮可以稳定重复的波形并捕获单脉冲波形。

7、有效比特:是示波器准确再现正弦信号波形的能力的度量。这个度量将示波器的实际错误同理论上理想的数字化仪进行比较。由于实际的误差数包括噪声和失真,所以必需指定信号的频率和幅度。

8、频率响应:仅仅采用带宽是不足以保证示波器准确捕获高频信号的。示波器设定的目标是一个特定类型的频率响应:最大平坦包络时延(MFED)。此类型的频率响应用最小的过冲和阻尼振荡,提供极好的脉冲逼真度。由于数字示波器是由实际的放大器、衰减器、模数转换器(ADC)、连接器和继电器组成,MFED响应只是对目标值的一个逼近。不同厂家的产品的脉冲逼真度有着很大的不同。

9、垂直灵敏度:垂直灵敏度指示垂直放大器对弱信号的放大程度,通常用每刻度多少毫伏来表示。多用途示波器能检测出的最小伏特数的典型值约为1mv每垂直显示屏刻度。

10、扫描速度:扫描速度表征轨迹扫过示波器显示屏的速度有多快,以便能够发现更细微的细节。示波器的扫描速度用时间(秒)/格表示。

11、增益精度:增益精度是表征垂直系统对信号的衰减或放大的准确程度,通常用多少百分比误差来表示。

12、水平准确度:水平或者时基准确度是指在水平系统中,显示信号的定时的准确度,通常用多少百分比误差来表示。

13、垂直分辨率:模数转换器的垂直分辨率,也就是数字示波器的垂直分辨率,是指示波器将输入电压转换为数字值的精确程度。垂直分辨率用比特数来度量。计算方法能提高有效的分辨率,例如高分辨率捕获模式。


关键字:示波器  常用术语 引用地址:示波器常用术语解释

上一篇:模拟示波器和数字存储示波器的选择和使用
下一篇:示波器的选型秘籍

推荐阅读最新更新时间:2024-03-30 23:35

从测试应用介绍示波器的使用方法
示波器的作用无可取代,它一直是工程师设计、调试产品的好帮手。但随着计算机、半导体和通信技术的发展,示波器的种类、型号越来越多,从而使示波器的作用得到详细的划分。示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,但示波器的使用方法在基本方面都是相同的。下面小编从测试应用发面来介绍一下示波器的作用和它的基础使用方法。   示波器的作用是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标
[测试测量]
第二讲 示波器基础之采样率和存储深度
中心议题: 示波器的采样、采样速率 示波器的采样模式 示波器的存储、存储深度 解决方案: 实时采样用来捕获非重复性或单次信号 等效时间采样是对周期性波形在不同的周期中进行采样 在高速串行数据的测量中用FFT来分析噪声和干扰 存储深度=采样率×采样时间 在选择示波器时,工程师首先需要确定测量所需的带宽。然而当示波器的带宽确定后,影响实际测量的恰恰是相互作用、相互制约的采样率和存储深度。图1是数字示波器的工作原理简图。 图1数字存储示波器的原理组成框图 输入的电压信号首先进入示波器的前端放大器,放大器将信号放大或者衰减以调整信号的动态范围,其输出的信号由采样/保持电路进行采样,并由A/D转换器数字化。经过A/D转换后,信号变成数字形
[测试测量]
第二讲 <font color='red'>示波器</font>基础之采样率和存储深度
如何利用示波器实现远程控制
示波器作为电子行业最常用的测量仪器之一,牵涉着大量的图片导入导出,数据处理,自动化操作等等。我们打算在这里给大家详细讲解示波器的远程控制,具体安排如下: 1 通过无线网络环境实现的远程图片存取和控制(适用于特殊场合或者远程debug) 2 基于特殊软件快速无基础实现自动化测试(适用于简易自动化测试的快速设定) 3 基于SCPI指令编程基础(要学编程,需要注意什么?) 一、示波器远程控制之无线控制 有很多场合不方便使用线缆连接电脑和示波器,比如办公桌离试验台较远,因为安全问题实验室需要全封闭,或者我们想在家里或者任何其他地方看一下示波器波形。 如何利用示波器无线远程控制 让你随时随地监控示波器波形并实时操控 具体步骤
[测试测量]
如何利用<font color='red'>示波器</font>实现远程控制
如何实现对示波器的远程控制
  1、LabVIEW基础介绍   计算机通过LAN(网口)或者USB接口与示波器建立连接来控制示波器。如图1所示。   图1 硬件连接图   一听到要控制示波器,大家都会想到通过SCPI命令来控制示波器。那如何来实现呢?可选的方案有:   (1)通过编写程序代码,如使用C,C++,C#等语言结合开发环境(如VS2012)来编写代码;   (2)通过LabVIEW,使用图形界面来实现。   今天我们就来说说如何使用LabVIEW实现对ZDS2024示波器的控制。   LabVIEW的定义:   LabVIEW由National Instruments公司开发,于1986年发布第一个版本,是一种用图标和连线代替文本行
[测试测量]
如何实现对<font color='red'>示波器</font>的远程控制
基于示波器卡和LabVIEW的马达编码器测试系统
为了对伺服马达部件内的编码器质量进行自动评定,本文提出了一种采用三块5102 PCI插卡示波器,通过RTSI总线进行同步,组建一个基于PC的自动测试系统,并用LabVIEW对测量进行控制的解决方案,着重介绍了解决不同板卡之间同步问题的技巧。 Inductive Components公司需要对自己生产的伺服马达内的编码器质量进行评定并打印单据,请Caron Engineering公司开发了一个自动测试系统来测试伺服马达部件。理想情况下,操作员只需简单地连接伺服装置,并选择需要测试的马达/编码器组合。测试过程将检查正确的马达,然后确定编码器通道A、B、指示脉冲和所有其它通道(总共六个通道)的质量情况。 硬件组成 系统中选用了NI
[测试测量]
示波器测量汽车发动机冷却风扇信号及分析
汽车发动机的冷却风扇是车辆冷却系统的重要组成部分,若风扇出现故障,则会导致发动机冷却不足或冷却过度,造成发动机工作环境恶化,进而影响发动机的性能和使用寿命。风扇的性能直接影响发动机的散热效果,从而影响发动机的性能。 发动机电脑根据目标温度产生占空比信号(PWM),以此来控制风扇的转速。占空比信号越高,风扇的转速就会越快,风扇的供电主要由蓄电池经过熔断保险丝直接供电给风扇控制器。 我们来看下如何用示波器测量汽车发动机冷却风扇的信号: 取一根BNC转香蕉头线接入示波器的通道一,红色香蕉头连接一根刺针,黑色香蕉头连接一个鳄鱼夹用于搭铁接地。将红色刺针刺入风扇插头上的信号线(一般是三根线里最细的那根,其他2根一根是电源线,一根是接
[测试测量]
<font color='red'>示波器</font>测量汽车发动机冷却风扇信号及分析
如何利用示波器测量uA级电流和uV级电压
当前最火的一个行业当属物联网,而物联网产品设计所面临的挑战是如何最大限度延长其超小体积电池的供电时间。这些智能设备,包括智能家电和工业传感器节点,充电一次要能够工作很长的时间,有很多智能可穿戴设备目前也是受限于电池供电时间而无法真正普及。为了延长这些智能设备的待机时长,除了等待更高能量密度的电池外,工程师要做的就是降低每一个元器件的工作电流特别是待机时刻下的电流,但是,使用常规的电流探头,我们测出来的信号是这样的: 巧妇难为无米之炊,电流测出来还没噪声大,您该怎么办? 有人问:这么小的电流,为什么不用高精度万用表测? 其实一般智能设备电流信号的动态范围都非常宽,并且通常需要在活动状态( 峰值电流非常高而且消耗得非常快) 与
[测试测量]
如何利用<font color='red'>示波器</font>测量uA级电流和uV级电压
嵌入式系统中数字示波器用户图形界面的实现
摘 要: 在嵌入式系统中实现用户图形化(GUI),已经成为大势所趋。本文简要介绍了应用在RIGOL DS1000系列数字示波器上的用户图形界面的实现。重点分析了用户图形界面(GUI)的设计思路。并简单介绍了软件设计结构和流程。 关键词:用户图形界面(GUI);VisualDSP++ 4.0 Kernel;数据结构 1 引言 随着嵌入式系统应用领域的不断扩大,系统复杂性也在不断提高。所以在嵌入式系统中实现用户图形化(GUI),已经成为大势所趋。目前,嵌入式系统中大多数的用户图形化界面(GUI)都是在操作系统(如OS、WinCE、Linix)的支持下, 调用系统的各种API函数实现的。这些操作系统为实现GUI提供了大量的
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved