AD630实现蓄电池内阻在线测量方案

发布者:知者如渊最新更新时间:2018-05-19 来源: 电子魔法师关键字:AD630  蓄电池 手机看文章 扫描二维码
随时随地手机看文章

    ①可从100dB噪声中恢复信号;

  ②频道带宽:2Mhz;

  ③压摆率:45V/us;

  ④串扰:-120dB(1kHz);

  ⑤引脚可编程、闭环增益:±1和±2;

  ⑥闭环增益精度和匹配:0.05%;

  ⑦通道失调电压:100μV(AD630BD);

  ⑧350kHz全功率带宽。


    ad630引脚图及功能


    AD630实现精密整流电路

  这个电路的工作原理可以用下图来说明。AD630内部的两个运放构成了增益为2的同向与反向放大器,然后用模拟开关来切换这两路。当输入信号为正时,模拟开关打到同向放大器那端,输入信号为负时,模拟开关打到反向放大器那端。

  上面的电路的增益为2,利用AD630还可以实现其他倍数的增益。这里不多介绍了,有需要的可以参考AD630的芯片手册。这个电路可以工作在输入信号频率从DC到几百kHz的范围内。最佳的工作频率范围为 DC 到几kHz。在这个频段,这个电路的效果应该时这些精密整流电路中最好的。上述电路的输入阻抗随输入电压的极性变化,输入电压为正时输入阻抗很高,输入电压为负时,输入阻抗较低。所以对信号源的输出阻抗有一定的要求,如果输入信号的输出阻抗较高,需要增加一级缓冲级。


    AD630的锁相放大电路


  AD630的锁相放大电路示意图如图2所示。

  A点的波形为被检测信号与载波调制后的双边已调制波形,B点为双边已调制波形和噪声叠加后的波形,AD630的第9脚接载波信号,方波、正弦波都可行,相当与一个参考相位。AD630的输出接一个积分电路及一个低通滤波器,以达到的信号的完美恢复。


    AD630实现蓄电池内阻在线测量

  1、测量原理

  实现电池内阻在线测量的基本原理如图1所示。

  图1蓄电池内阻在线测量原理框图

  当信号源给电池注入一个交流电流信号时,测量出在电池两端产生的交流电压信号和输入电流,就可计算出电池的内阻:

  式中:Vrms为电池两端交流电压信号的有效值;Irms为输入电池中交流电流信号的有效值。

  采用交流法测量电池内阻,不需要对电池进行放电,从理论上讲电池在任何状态下都能对其实施测量。

  在实际测量中,由于电池的内阻在微欧或毫欧级,注入一定的电流后,在电池两端产生的电压信号非常微弱,往往被噪声淹没,放大后再测量,用交流电压表很难区分出来有用的信号,需要用相关检测的原理,才能测量出电池两端的交流电压信号。

  运用相关器检测微弱信号的原理如图1中相关检测部分所示,它由开关式乘法器和积分器组成,蓄电池两端检测到的微弱信号经过前置放大滤波后输入到乘法器信号输入端,注入蓄电池的正弦波信号通过电路变换形成方波信号后,输入到乘法器参考信号端。若电池两端的有用信号为Vs(t),混入的噪声为n1(t),则输入端的混合信号为f1(t)=Vs(t)+n1(t);参考端的有用信号为Vr(t-τ);当混入的噪声为n2(t-τ),则参考端的混合信号为f2(t-τ)=Vr(t-τ)+n2(t-τ)。

  根据相关检测的原理,通过乘法器相乘运算,信号和噪声、噪声和噪声之间是互相独立的,它们的相关函数为零,只有信号和信号相关,且可从噪声中检出。具体可表示为:

  当蓄电池两端检测到的正弦信号为Vs(t),方波参考信号为Vr(t-τ):

  因为电池两端的信号频率和参考信号基波频率相同,即ωr=ωs,积分器的输出为:

  式中:K只与积分器的传输系数有关;φ为检测信号与参考信号相位差。

  如果调整φ=0,则输出直流信号达到最大值,充分说明,通过乘法器和积分器以后,抑制了噪声。在输入信号和电路传输系数一定的情况下,输出信号的大小只与电池的内阻成比例,只要测出蓄电池两端交流电压值和通过蓄电池的交流电流值,就能计算出蓄电池的内阻,实现在线测量。

  2、测量系统的硬件电路设计

  依据上述原理所设计的系统原理框图如图2所示,由通路选择开关电路、前置放大带通滤波器、AD630乘法器电路、积分器电路、交流恒流信号产生电路、方波转换电路、取样电路、单片机控制系统以及外部显示通讯等组成。由于蓄电池的内阻很小,故必须降低导线阻抗对电池内阻的影响,因此采用四引线连接法。系统输出的交流恒流信号接到电池两端,再将电池内阻产生的电压信号,连接到输入转换开关电路。上电后,首先由单片机控制调整检测信号和参考信号的相位差!使之为0。开始测量后,先由模拟开关CD4052选通电流测量通路,该通路在向蓄电池注入交流信号的回路中设置一标准取样电阻,以测定交流信号的电流值;再选通电压测量通路,测定电压值。采集到的信号通过放大滤波等处理后送入单片机中,利用式(1)算出蓄电池的内阻。

  图2电池内阻在线测量系统框图

  2.1放大滤波电路

  由于采集到的信号非常微弱,所以必须先进行前级放大滤波再输入相关器中。如图3所示,低噪声前置放大器由仪用放大器AD620和带通滤波器组成。

  图3前置信号放大电路原理图

  AD620是一种高性能仪器放大器,性能稳定,增益可调,其放大倍数由1脚和8脚之间的电阻RG决定,G=1+(49.4kΩ/RG)。信号经过其放大后,通过带通滤波器检测出0.4~3kHz的带通信号,输送到乘法器信号端。直流放大电路采用高精度运放OP27实现程控增益放大,放大器的反馈电阻利用模拟开关CD4052进行选择,通过单片机控制选择放大倍数,使信号在最佳A/D采集电压范围内。

  2.2相关运算电路

  在设计中相关器采用AD公司生产的AD630,这是一款高精度的平衡调制器,内部电阻均是高稳定度的SiCr薄膜电阻,保证了其工作的精确性和稳定性。

  它的信号处理应用包括平衡调制和解调、同步检测、相位检测、正交检波、相敏检测、锁定放大和方波乘法等。

  AD630逻辑图如图4所示,其内部可以被认为是集成了两个前置放大器,一个用来选通前置放大器的精密比较器,一个作为多路选择开关以及输出级积分运算放大器。拥有高切换速度和快速稳定的线性放大器,由于比较器的响应时间快速,可使开关失真降至最低。此外,还有极低的通道间串扰。AD630通常用于高精度的信号处理以及动态范围宽的仪器设备。在锁相放大电路中,当其用作同步解调器时,可以恢复在100dB噪声背景下的微弱信号。AD630最优的工作频率是在1kHz,故注入蓄电池的信号和参考信号选为1kHz,同时1kHz也处于适宜的电池内阻频率响应范围,不过其在零点几兆赫兹时仍然可正常工作。

  采用AD630作为乘法器实现的相关检测电路原理图如图5所示。其中,AMPA和AMPB分别配置为正相放大器和反相放大器。输入信号为一路待检测信号和一路参考信号。待检测信号通过1脚送入,参考信号通过9脚输入到比较放大器。待检测信号在器件内部根据载波信号的正负进行翻转,实现了开关乘法功能。

  图4AD630器件逻辑图

  图5AD630实现相关检测电路原理图

  3、实验结果与分析

  3.1前置放大与滤波结果分析

  设计中前置放大要求为100倍,根据AD620中RG计算公式RG=49.4kΩ/(G-1)计算出RG为499Ω。

  在此对电容误差为#5%,电阻误差为±1%的放大电路使用MulTIsim软件进行仿真,如图6所示,通道A为输入信号,通道B为经过AD620放大后的输出信号,若输入信号有效值为13.621mV,则输出为1.36*8V,可实现精确稳定的放大。

  图6AD620实现精确稳定放大波形

  3.2带通滤波结果分析

  带通滤波是通过一级低通滤波器和一级高通滤波器实现的。低通滤波器是采用多重反馈型的LPF,如图3中U3级所示,可解得该滤波器传递函数为:

  使R1=R2=R3=R,C1=C2=C,可得:

  由于当时通带截止,所以由可解得截止频率f=037/(2RC)。按照设计要求选取R=20kΩ,C=1nF,仿真得到其频率特性如图7所示。

  图7低通滤波器的频率特性

  由图7可看出,当增益为-3dB时所对应的频率为3kHz,同理设计的高通滤波器频率特性如图8所示。

  图8高通滤波器的频率特性

  3.3AD630结果分析

  按照AD630设计要求连接好电路,实现乘法效果如图9所示,通道3为输入信号,通道2为参考信号,通道1为输出信号,信号端和参考端输入1kHz的正弦信号,输出则为两信号相乘的结果。经过AD630实现乘法后,再将相乘后的信号送入积分器中,可将噪声从信号中滤去,变为直流信号。在信号中混入30dB的噪声,通过以AD630为核心的相关器检波如图10所示,使通道3为原始信号,通道4,1分别是混入噪声和通过AD630后的信号波形;通道2为积分后的直流信号,其值等于原始信号通过相关检测后的值。该设计很好地抑制了噪声,在内阻测量系统中可很好地将所需信号检测出来。

  图9AD630乘法器输入/输出波形

  图10相关器检波性能

  3.4系统测试结果分析

  按照文中的思路方案设计制作了一套电池内阻在线测量系统,并与使用stanfordSR830所测得的结果进行了对比。测试电池为使用一年左右的环宇牌12V,15A·h铅酸蓄电池,测试结果如表1所示。由表1的测量数据可以看出,该系统与stanfordSR830的测量结果基本吻合。

  图11是一只6V,4.5A·h的蓄电池放电过程中在线测量的内阻曲线图,电池充满电后对其进行放电,放电电流选择为650mA。放电过程中内阻值逐渐增大,在放电的初期内阻变化率很小,到后期开始有明显的变化。在蓄电池剩余容量为50%以上时,内阻值变化很小,当容量降至40%以下时,则内阻值有明显变化,尤其在20%以下时,随着容量的减少,内阻值急剧增大,此时应注意对蓄电池及时进行充电,避免对蓄电池造成损害。

  表1内阻测试对比结果

  图11蓄电池内阻的放电特性

  图12为蓄电池充电过程中的内阻曲线图。将蓄电池放电至截止电压后,选取200mA电流对其进行充电,在充电过程中对内阻进行在线测量。由测试结果可看出,充电过程与放电过程的变化正好相反,刚开始内阻先急剧减小,然后缓慢变化,最后几乎不变。同样内阻的变化说明了容量的变化。

  图12蓄电池内阻的充电特性


关键字:AD630  蓄电池 引用地址:AD630实现蓄电池内阻在线测量方案

上一篇:“QuanTOF”在北京通过技术鉴定
下一篇:水中VOC监测仪作为专门监测水体中VOC含量的仪器关注

推荐阅读最新更新时间:2024-03-30 23:37

电动汽车用蓄电池简介
汽车工业的迅速发展,推动了全球机械、能源等工业的进步以及经济、交通等方面的发展,同时也极大的方便了人们的生活。但是,传统的内燃机汽车所固有的消耗能源、污染环境的缺陷也一直影响和困挠着人们的生活及社会的发展,随着社会的进步和科技的发展,随着保护环境、节约资源的呼声日益高涨,新一代电动汽车作为无污染、能源可多样化配置的新型交通工具,近些年来引起了人们的普遍关注并得到了极大的发展。北京要把2008年奥运会办成一届绿色的奥运会,其中的一项工作就是要用环保型的电动汽车来替代目前的内燃机汽车。 电动汽车以电力驱动,行驶无排放(或低排放),噪音低,能量转化效率比内燃机汽车高很多,同时电动汽车还具有结构简单、运行费用低等优点,安全性也优于内燃机汽车
[电源管理]
基于ARM9与LEM传感器的蓄电池在线监测硬件平台
1 概述   蓄电池作为备用电源在供电系统中往往起着极其重要的作用,在交流电失电或其它事故状态下蓄电池组一旦出现问题,供电系统将面临瘫痪,造成设备停运及其它重大运行事故。近年随着阀控式密封铅酸蓄电池(以下简称阀控蓄电池)的广泛使用,加之使用环境及条件欠佳,因蓄电池提前失效而引发的事故时有发生。阀控蓄电池由于特殊的阀控式密封结构,使得我们无法准确掌握蓄电池的健康状况,其“免维护”的这一优点,反而成为电池运行管理中的缺点和难点,同时极其容易误导用户。在提高电池性能,减少维护工作量的同时,如何快捷有效地检测出早期失效电池并预测蓄电池性能变化趋势已成为电池运行管理的新课题。目前除了核对性放电、电压巡检等常规维护检测手段外,随着技术的发
[电源管理]
基于ARM9与LEM传感器的<font color='red'>蓄电池</font>在线监测硬件平台
老外回收4480颗废旧18650电芯:造出40kWh超级蓄电池
除了Model S、Model X等电动车之外,特斯拉今年还在大力推广基于锂电池的电能存储解决方案——Powerwall。本质上来说,Powerwall就是一款超大号的家用电池,可通过太阳能板将光能转化为电能,然后将电能存储起来,以弥补用电高峰期的缺口。下面就随手机便携小编一起来了解一下相关内容吧。 此外,Powerwall还可以配合家用电网使用,当用电低谷的时候,它就可以把电能存储下来,在用电高峰的时候使用。 不过,Powerwall的售价高昂,于是有人想到了使用废旧笔记本电池来搭建一套类似的储能系统。来自澳大利亚的Peter Matthews就从各种渠道搜集到了4480颗二手笔记本电芯,配合40太阳能发电板,造出了一套可存储
[手机便携]
老外回收4480颗废旧18650电芯:造出40kWh超级<font color='red'>蓄电池</font>
蓄电池在恶劣环境下的应用解决方案
通信直流电源是基础电信设备,为通信主设备提供供电保障。蓄电池组是通信直流电源系统中的重要组成部分,相当于备用电源,是通信直流电源系统的最后一道防线。 在电信业务的初期发展过程中,运营商对蓄电池关注较少,在交流停电时蓄电池能供电就可以了。近年来,电信运营领域的竞争加剧、愈演愈烈,运营商对蓄电池的使用寿命、维护工作量、TCO非常关注,要求越来越高。 随着通信网络的发展与技术进步,为了节省建设成本、加快建设周期,在城乡结合部、小城镇和农村地区,运营商往往不建设机房或者移动方舱,而是采用室外柜方案安置通信主设备及直流电源系统。近年来,全球主流运营商的新建基站中,室外基站的比例逐年提高。对于低纬度及沙漠化的国家或地区(如南亚、非洲等),高温
[电源管理]
加快建立京津冀区域新能源汽车动力蓄电池回收利用体系
  2018年5月29-31日,为推进京津冀三地协同开展新能源汽车动力蓄电池回收利用试点工作,加快建立京津冀区域新能源汽车动力蓄电池回收利用体系,工业和信息化部节能与综合利用司司长高云虎带队前往北京市、天津市开展新能源汽车动力蓄电池回收利用工作调研,并在京组织召开了三地工作协调会议。北京市、天津市、河北省工业和信息化主管部门有关负责人参加了调研活动及会议。   调研组实地调研了北汽新能源、天津银隆等新能源汽车生产企业,北京普莱德、天津力神等动力蓄电池生产企业,以及北京匠芯、天津赛德美、天津猛狮等综合利用企业,详细了解了企业开展新能源汽车动力蓄电池回收利用工作现状和在发展过程中遇到的问题和困难。调研活动结束后,高云虎在北汽新能
[新能源]
智能型铅酸蓄电池充电器的设计与实现
铅酸蓄电池的制造成本低、容量大、价格低廉,使用十分广泛。由于其固有的特性,若使用不当,寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,采用正确的充电方式,能有效延长蓄电池的使用寿命。因此,设计一种全新的智能型铅酸蓄电池充电器是十分必要的。 1 常规充电方式 铅酸蓄电池的常规充电方式有两种:浮充(又称恒压充电)和循环充电。 浮充时要严格掌握充电电压,如额定电压为12V的蓄电池,其充电电压应在13.5~13.8V之间。浮充电压过低,蓄电池会充不满,过高则会造成过量充电。电压的调定,应以初期充电电流不超过0.3C(C为蓄电池的额定容量)为原则。 循环充电,其初期充电电流也不宜超过0.3C,充电的安培小时数要略大于放电安培小
[嵌入式]
工信部发布两项关于废旧动力蓄电池的规范
  为适应行业发展新形势,引导行业持续健康发展,现将《新能源汽车废旧动力蓄电池综合利用行业规范条件(2019年本)》和《新能源汽车废旧动力蓄电池综合利用行业规范公告管理暂行办法(2019年本)》予以公告。《新能源汽车废旧动力蓄电池综合利用行业规范条件》和《新能源汽车废旧动力蓄电池综合利用行业规范公告管理暂行办法》(工业和信息化部公告2016年第6号)同时废止。   附件:   1.新能源汽车废旧动力蓄电池综合利用行业规范条件(2019年本)   2.新能源汽车废旧动力蓄电池综合利用行业规范公告管理暂行办法(2019年本) 工业和信息化部 2019年12月16日
[新能源]
蓄电池的单相有源逆变恒流放电控制方式的研究
0 引言 在蓄电池组维护的过程中,为了活化蓄电池和测量蓄电池的容量,必须定期对蓄电池进行放电实验。目前,国内蓄电池放电多采用电阻放电装置,虽然结构简单、成本低,但很难做到恒流放电,且无法精确计算蓄电池组的放电容量。本文提出采用双级变换电路的方法,即DC/DC变换电路和PWM整流逆变电路,研制出一种新型的蓄电池单相有源逆变回馈放电装置,并进行了相应的实验研究。实验结果表明,该装置既能实现蓄电池恒流放电,又能将蓄电池组释放的能量回馈给电网,并且使流人电网的电流为正弦渡,对电网没有谐波干扰 。 由于环境温度、充电方式、老化等因素的影响,蓄电池组可供使用的实际容量往往比其标称容量小得多。为了准确掌握蓄电池的真实容量,消除因蓄电池容量衰减造成
[电源管理]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved