平均是减小测量系统固有不确定度的一个最常用的方法。进行多次测量,对其结果求平均,可以减小测量随机性的影响。如今大部分测量仪器都具有平均功能,仪器通常不是直接输出含有噪声的结果,而是测量上百次,计算出平均值,把平均值作为结果输出。但是下文会描述:频谱分析仪中的功率平均有时会导致不正确的结果。
本文的试验会引用两家不同厂商的频谱分析仪的功率测量结果。但是本文的结论对任何使用“后处理平均方法”的频谱分析仪都适用。
第一个错误观点:对均方根功率求平均,可以得出跨度为零的轨迹(或其一部分)的平均功率。为了更好的驳斥这个观点,有必要先了解一下平均的数学定义。如公式1所示:MAVE是某个试验N次测量的平均值,其中Mi是每一次测量的结果。
在这个例子中,仪器A和仪器B的结果,可接受的差异在一定范围之内(比如±1dB),所有的测试都是在频率跨度为零ZS(zero span)的情况下测试的,这时频谱分析仪会在一个固定的频点,测量这个频点的功率随时间变化的关系。这里并不是刻意选择ZS模式的,其实平均问题在传统的频域扫描测试中也存在。
在两个例子中,都采用ZS模式测量零信道功率比ACPR(adjacent-channel-power-raTIo)。对于现代采用数字中频滤波器的频谱分析仪而言,这种测量功能是必备的,可以在偏离载波中心不同频偏的频率点多次测量功率,而不需要重新调谐频谱分析仪的中心频率。
图1显示的是ZS模式下,一个GSM时隙脉冲信号。其中蓝色的曲线是脉冲的功率包络。这里测量的是“射频输出调制谱”,也就是所谓的ACPR测量。
从这条曲线可以得到很多结果,如最大峰值功率、最小功率和平均功率,寻找最大/最小功率在概念上非常直观,仪器直接从轨迹中搜索出最大/最小点即可。
计算平均功率最简单的方法(当然也是正确的)就是对红色界限范围内的测量点求平均。如公式2所示,其中N是红色界限内的点数,Pith point是第i个点的功率。
问题是,仪器厂商对于功率平均的方法是不一致的。其中一个厂家是按照公式2来计算的;但是另一个厂商先把功率转换成电压,对电压求平均,再把平均电压换算成平均功率,如公式3所示。
由于两种仪器输出的平均值的差别不大,所以很难看出其中一种仪器用的是公式2,而另一种用的是公式3。有必要从两种仪器分别取出多组轨迹,进行平均直到找到吻合之处。在图1的例子中,采用“真正的均方根”平均功率算法(后面简称RMS功率)的仪器,和采用“电压平均”功率的仪器之间的结果相差 0.25dB(前者比后者高0.25dB)。这点差异可能会被简单的认为是仪器之间的个体差异。尽管0.25dB看起来很小,但是当要求的精度仅仅是±1dB时,0.25dB就显得有点大了。如果是测量整个脉冲的平均功率的话(调制谱测量的是脉冲50%到90%时间内的功率),这个差异会扩大到约 1dB。这个值就会接近我们所要求的仪器之间误差容限了。
“电压平均”功率代表的是“先平均再平方(mean-squared)”的功率(如公式3),而“均方功率”则是“先平方再平均(mean- square)”功率。由统计学的知识我们可以得出:两者的差就是幅度变化。也就是说,两种仪器输出功率的差值就是幅度变化。而且“均方功率”永远大于 “电压平均功率”(RMS power 》 average voltage power)。
第二个关于功率平均的错误观点就是:对功率求平均总是在线形单位(瓦特)下进行的。实际上很多仪器常常采用对数平均。同样采用上面那个例子,假设测试中噪声影响很大,为了去除噪声,决定测量多组轨迹,对轨迹求平均。GSM标准规定,ORFS调制谱的测量需要对200个脉冲求平均。公式4是对应的计算公式,其中PTrace i是用公式2或公式3计算出的单条轨迹的平均值。
当然对这个功率的线性表达结果(单位为瓦特)求平均是合理的,但是很多仪器提供了对数平均功能。这个例子中,以dBm为单位的功率进行了平均。例如,求 1和 3dBm的平均值:如果用线性平均结果为:(1.25mW 2mW)/2=1.62mW= 2.11dBm;但是对数平均的结果为:(1dBm 3dBm)/2=2dBm。因此对数平均的结果会引入0.11dB的误差。
需要注意的是,对数平均引起的误差的大小和信号是否重复有关。尽管对数平均方法是错误的,但是对于重复信号,对数平均和线性平均的结果一致。需要注意,这里说的重复信号指的是每一个周期,其功率对时间关系是完全一样的。
必须要牢记:非重复信号会引入误差,如果不注意,经常会导致实验室的测量数据和实用环境中的误差很大。因为在实验室中,我们通常采用很好的“任意波形发生器ARB(arbitrary waveform generator)”作为信号源,这种源通常是把一个波形不断的重复播放。但是实用环境中的信号肯定不是重复性的。然而,只要不同周期之间的功率差别不是很大,对数平均和线性平均的误差也不会很大。
另一个需要注意的是,轨迹平均时,每次测得的各条轨迹之间对应的“点和点”的平均算法问题。同样的,信号的重复性会影响对数平均引起的误差。在这里,轨迹上的每一个点和其他轨迹上的对应点一起求平均,得出的结果作为这个点的平均值。
同样的,轨迹上的每一个点和其他轨迹上的对应点(同一个x轴)一起求平均,得出一条平均的轨迹线。这里x轴对应的是时间,当然对于频率也适用。和前面一样,这里可以采用线性平均或对数平均。这样对x轴上每一个点都做完平均之后就可以得到一条平均轨迹了。如果信号是重复的,线性平均和对数平均的结果相同,因为x轴上每一个点的功率在各次测量的轨迹上是相同的。
当被测信号不是重复的结果如何呢?图2就是对20个不同的EDGE信号,分别采用对数平均和线性平均后的结果。当然两条曲线会有差异,而且可以看出对数平均的结果比线性的小。图3显示的是两条曲线每一个点的差异。注意,正如我们所料,训练序列(译者注:用于同步和信道估计的部分,是完全重复的)部分的轨迹完全重合。
上一篇:功率分析仪的录波功能测试电机上电瞬间的启动脉冲分析
下一篇:PXIe-5668R-26.5GHz宽带信号分析仪的优点
推荐阅读最新更新时间:2024-11-04 20:59
- LTC2992HMS-1 双向 30V 至 300V 高侧功率监视器的典型应用
- LC12S转接板
- EVAL-ADE7169EBZ-2,带有 8052 MCU、RTC 和 LCD 驱动器的 ADE7166 单相电能计量 IC 评估套件
- TCR4S285DWBG、200mA、2.85V 输出电压 CMOS 低压降稳压器的典型应用
- 2019年电赛综合测试题
- 基于STSPIN32F0B的低压无刷电动工具的紧凑型参考设计
- 3.3V输入、12V (15V)输出的隔离电源
- d题,基于互联网的摄像测量系统
- 使用 LTC3637MPDHC 4V 至 76V 输入至 1.8V 超级电容充电器的典型应用
- 用于微功率 A/D 转换器的 LT1634BCS8-4.096 电压基准的典型应用
- 技术直播:TI 60G毫米波传感器概述和应用介绍,种草封装了天线的智能传感器IWR6843
- 再见2019,你好2020!写下你的年终总结和新年计划
- 免费下载 | 注册施耐德电气,下载《施耐德电气参考指南》白皮书
- Digi-Key KOL视频来袭~欢迎进入MicroPython的奇妙世界
- 邀请小伙伴一起学AM437x,好礼有你!
- 快来应援吧!投票选出你最爱的TI培训课程
- TI模电选课测试体验活动第二期!模电怎么学?TI帮你订制课程清单~
- 安森美半导体——FOD83xx/T系列来袭! 答题赢好礼,更可免费申请样片
- 了解ADI电网管理、能源计量方案,答题赢Kindle、《新概念模拟电路》【世健的ADI之路主题游 能源站】
- 有奖直播 | 同质化严重,缺乏创新,ST60毫米波非接触连接器,赋予你独特的产品设计,重拾市场话语权