光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。它符合郎珀-比尔定律 A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。
物理原理任何元素的原子都是由原子核和绕核运动的电子组成的,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。能量最低的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。如果将一定外界能量如光能提供给该基态原子,当外界光能量E恰好等于该基态原子中基态和某一较高能级之间的能级差E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。
电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10^-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。
物理干扰
物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。
配制与被测试样相似的标准样品,是消除物理干扰的常用的方法。在不知道试样组成或无法匹配试样时,可采用标准加入法或稀释法来减小和消除物理干扰。
化学干扰
化学干扰是指待测元素与其它组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率,是原子吸收分光光度法中的主要干扰来源。它是由于液相或气相中被测元素的原子与干扰物质组成之间形成热力学更稳定的化合物,从而影响被测元素化合物的解离及其原子化。
消除化学干扰的方法有:化学分离;使用高温火焰;加入释放剂和保护剂;使用基体改进剂等。
电离干扰
在高温下原子电离,使基态原子的浓度减少,引起原子吸收信号降低,此种干扰称为电离干扰。电离效应随温度升高、电离平衡常数增大而增大,随被测元素浓度增高而减小。加入更易电离的碱金属元素,可以有效地消除电离干扰。
光谱干扰
光谱干扰包括谱线重叠、光谱通带内存在非吸收线、原子化池内的直流发射、分子吸收、光散射等。当采用锐线光源和交流调制技术时,前3种因素一般可以不予考虑,主要考虑分子吸收和光散射地影响,它们是形成光谱背景的主要因素。
分子吸收干扰
分子吸收干扰是指在原子化过程中生成的气体分子、氧化物及盐类分子对辐射吸收而引起的干扰。光散射是指在原子化过程中产生的固体微粒对光产生散射,使被散射的光偏离光路而不为检测器所检测,导致吸光度值偏高。
1、氩气
吹氩的主要作用是试样激发时赶走火花室内的空气,减小空气对紫外光区谱线的吸收。主要是因为空气中的氧气、水蒸气在远紫外区具有强烈的吸收带,对分析结果造成很大的影响,且不利于激发稳定,形成或加强扩散放电,激发时产生白点。另外,样品中的合金元素在高温情况下可能会与空气中成分发生化学反应生成分子化合物,从而会有分析光谱对我们所需的原子光谱造成干扰。因此必须要求氩气的纯度达到99.999% 以上。另外,氩气的压力和流量也对分析质量有一定影响,它决定氩气对放电表面的冲击能力,这种激发能力必须适当,过低,不足以将试样激发过程中产生的氧气和它形成的氧化物冲掉,这些氧化物凝集在电极表面上,从而抑制试样的继续激发;氩气流量过大,一是造成不必要的浪费。二是对光谱仪也有一定的损伤。因此氩气压力和流量必须适当。据实践证明,氩气的压力和流量,应根据不同材质进行调节,对中低合金钢的分析,输入光谱仪的氩气压力应达到0.5—1.5MPa,动态氩的流量为12~ 20个读数,静态氩的流量为3~5个读数。
2、狭缝
光谱仪采用了一个复杂而又敏感的光学系统。光谱仪的环境温度,湿度,机械振动,以及大气压的变化,都会使谱线产生微小的变化而造成谱线的偏移。气压和湿度变化会改变介质的折射率,从而使谱线发生偏移,湿度的提高不仅会使空气的折射率增大,而且会对光学零件产生腐蚀作用,降底了仪器透光率,湿度一般应控制在55% -60% 以下。温度对光栅的影响主要改变光栅常数,使角色散率发生变化,产生谱线漂移。这些变化会使光谱线不能完全对准相应的出射狭缝,从而影响分析结果。因此光学系统每天至少调整一次,若室内温度控制恒定.即使天气变化不大,每周也要调整狭缝二次。
3、入射窗的透镜
通向各室的透镜,特别是通向空气室的透镜,由于试样激发时吹氩,使得试样曝光时产生的灰尘被吹至透镜上而阻止了光线的透过,影响测定结果的准确性。因此要经常清洗,一般一周两次,使其保持清洁,保证所有光线通过透镜而进入光室进行测定。特别提醒的是,清洗透镜后要多激发几个废样,等强度稳定后再进行标准化操作,否则对分析质量造成影响。
4、激发台
清洗激发台的内表面,主要是避免残留内壁的粉尘放电影响分析结果。通常每激发100—200次应清理一次。电极与激发面之间的距离,必须按极距要求调整好,如果与激发面的距离太大,试样不易激发,如果电极与激发面的距离太小,曝光时放电电流太大,以至于与仪器各参数不相匹配,使测定结果与实际结果之间有差异,影响测定的准确性。因此必须将电极与激发面的距离调整准确,清洗激发台和电极后一定要重视这个问题。
5、工作曲线的校正
光电直读光谱仪法虽然不受感光板限制,但工作曲线绘制成后,经过一段时间曲线也会变动。例如:透镜的污染、对电极的玷污、温湿度的变化、氩气的影响、电源的波动等,均能使曲线发生变化。原始曲线图中A的位置,经过一段时间后,曲线可能漂移到B的位置.为了使用曲线进行分析必须设法将曲线B恢复到曲线A的位置.为此必须对工作曲线进行标准化。在进行曲线标准化必须注意以下几点:
(1)在清洗样品激发台后必须先激发10次以上或通氩气一个小时后才能做日常标准化工作。
(2)标准化的样品要均匀,制样要仔细,样品的表面平整,纹路清淅。分析间隙准确,样品架保持清洁。
(3)标准化频率是根据分析样品的多少来定,一般情况一天必须标准化两次。
6、控制试样
在实际工作中,由于试样和标准样品的冶金过程和某些物理状态的差异,常常使工作曲线发生变化,通常标准样品多为锻造和轧制状态,而日常分析为浇铸状态。为了避免试样因冶金状态变化给分析结果带影响,常常应使用一个与分析试样冶金状态和物理状态都一样的控样,来控制分析结果,控样的元素含量应位于工作曲线含量范围内,并与分析试样的含量越接近越好。同时,控制样品的元素含量应当准确可靠,成份分布均匀,外观无气孔、砂眼、裂纹等物理缺陷。
7、样品
光谱分析结果的好坏,很大程度取决于样品,要注意样品的制备和处理技术。由于气孔偏析原因没有得到平整的表面或样品没有放置好,以及操作错误引起的误差,都会给分析质量造成很大影响。因此样品加工必须符合以下要求:
(1)整个试样表面应是均匀的(其形状大小适合激发台,以便使气体冲洗室能密封)。
(2)没有砂眼。
(3)清理样品背部的锈皮和油污保证样品和激发台接触良好。
(4)样品表面不要被污染,磨样应当有纹路。
(5)样品激发时激发点一般取位于样品半径1/2处,该处化学成份比较均匀,结果具有代表性,测定准确度高。综上所述,通过多年的实践,总结了几项影响直读光谱测定的因素,对提高元素分析质量有重要的应用价值。
- 使用 LTC2367CDE-16、16 位、500ksps SAR ADC 的典型应用
- LifeTorch
- LT6654BMPS6-3.3 升压输出电流电压基准的典型应用
- 红外倒车雷达 copy
- EVAL-AD5382EB,使用 AD5382、32 通道、14 位、125 KSPS 数模转换器的评估板
- RDR-802 - 60W USB PD 3.0 具有 3.3 V-21 V PPS 电源,使用 InnoSwitch3-Pro 和 Weltrend WT6635P 控制器
- LTC3621EDCB-23.3 1.2Vout、同步至 600kHz、强制连续模式同步降压稳压器的典型应用
- 麦克风声控模块
- 1810300106付靖凯
- Rapid-IOT无人机适配板