半导体电容一般是皮法 (pF) 级或纳法(nF) 级。许多商用 LCR 或电容表可以使用适当的测量技术测量这些值,包括补偿技术。但是,某些应用要求飞法 (fF) 或 1e-15级的非常灵敏的电容测量,包括测量金属到金属电容、晶圆上的互连电容、MEMS器件如开关、或者纳米器件上端子间的电容。如果没有使用适当的仪器和测量技术,我们很难测量这些非常小的电容。
通过使用工具,如选配4215-CVU电容电压单元(CVU)的Keithley 4200A-SCS参数分析仪,用户可以测量各种电容,包括<1 pF的超低电容值。CVU设计有独特的电路,通过 Clarius+ 软件进行控制,支持多种特性和诊断工具,确保最精确的测量结果。通过使用这个CVU及适当的技术,用户可以实现超低电容测量,支持几十阿法 (1e-18F) 的噪声。
本文介绍了怎样使用 4215-CVU 电容电压单元进行飞法电容测量,包括怎样进行正确的连接,怎样在 Clarius 软件中使用正确的测试设置来获得最好的测量结果。如需进一步了解怎样进行电容测量,包括线缆和连接、定时设置、保护和补偿,可以参阅吉时利应用指南“使用 4200A-SCS 参数分析仪进行最优电容和AC阻抗测量”。
连接器件
正确连接被测器件 (DUT) 对进行灵敏的低电容测量至关重要。为获得最好的测量结果,应只使用随机自带的红色 SMA 电缆把 CVU 连接到 DUT。红色 SMA 电缆的特 性阻抗是 100W。并联的两条 100W电缆的特性阻抗是50W,这是高频源测量应用的标准配置。随机自带的附件可以使用BNC或SMA连接连到测试夹具或探头。使用随机自带的扭矩扳手,紧固SMA电缆连接, 确保接触良好。
图 1 显示了2线传感的CVU配置。HCUR 和 HPOT 端子连接到BNCT形装置连接, 构 成 CVH(HI); LCUR和LPOT连接在一起,构成 CVL(LO)。图2是DUT 4线传感实例。 在本例中,HCUR 和 HPOT 端子连接到器件的一端,LPOT 和 LCUR端子连接到器件的另一端。我们使用到器件的4线连接, 通过尽可能靠近器件测量电压,来简化灵敏的测量。
不管是2线传感还是4线传感,同轴电缆的外部屏蔽层必须尽可能近地连接到器件上,以使屏蔽层的环路面积达到最小。这降低了电感,有助于降低谐振效应, 这种效应在 1 MHz 以上的频率时可能会带来负担。
所有电缆要固定好,避免移动,因为在执行偏置测量和实际 DUT 测量之间发生的任何移动,都可能会略微改变环路电感,影响补偿的数据。
在测量非常小的电容时,DUT屏蔽变得非常重要, 以降低由于干扰引起的测量不确定度。干扰源可以是AC信号,甚至是物理移动。金属屏蔽层应封闭DUT,连接到同轴电缆的外壳上。对低电容测量,最好使用 4 线传感,但如果电缆较短, 并采用了补偿技术,使用 2 线传感也能实现最优测量。
配置 Clarius+ 软件进行飞法测量
在Clarius软件中设置测量时,需要在 Library 中选择飞法项目,配置测试设置,执行测量。
在 Library 中选择飞法 - 电容项目。Clarius软件Projects Library 中包括一个进行超低电容测量的项目。从 Select 视图中,在搜索条中输入 “femtofarad”( 飞法 )。窗口中将出现 femtofarad-capacitance( 飞法 - 电容 )项目,选择Create,在项目树中打开项目。
配置测试设置。一旦创建了项目, 项目树中会出现 femtofarad-capacitance(飞法 - 电容)项目。这个项目有两项测试:(1)cap-measure-uncompensated 测试,这项测试用来测量DUT的电 容;(2)open-meas 测试,这项测试用来获得线缆和连接的电容。由于这些电容测量的灵敏度,我们使用与DUT测量完全相同的设置,来进行开路测量。然后从DUT 的电容测量中减去开路测量。这种方法在超低 电容测量中可以实现非常好的效果。
为成功地进行低电容测量,一定要在 Configure 视图窗口中相应地调节测量和定时设置。为进行最优调节, 部分建议如下:
测量设置:用户可以控制的部分设置是电流测量范围、AC驱动电压和测试频率。这对测量非常重要,因为确定器件电容的公式中涉及到这些项目。CVU从 Iac、Vac和测试频率中计算器件电容,公式如下:
观察公式中的关系,可以推导出最优的设置, 包括电流测量范围、AC 驱动电压和测试频率。CVU 有三个电流测量范围:1mA、30mA 和 1mA。对噪声最低的最低电容测量,应使用最低的电流范围:1mA 范围。
AC 驱动电压可能会影响测量的信噪比。AC 噪声电平保持相对恒定,使用更高的 AC 驱动电压则会生成更大的AC电流,从而改善信噪比。因此,最好使用尽可能高的 AC 驱动电压。在这个项目中,我们使用了1 V AC 驱动电压。
对超低电容测量,理想情况是使用大约 1 MHz 的测试频率。如果测试频率远远高于 1 MHz,那么传输线效 应会提高成功进行测量的难度。如果测试频率较低, 那么测量分辨率会下降,因为测试频率和电流是成比例的,所以测量噪声会提高。
定时设置:可以在 Test Settings 窗口中调节定时设置。 Speed 模式设置允许用户调节测量窗口。对超低电容 测量,可以使用 Custom Speed 自定义速度模式设置测量时间,实现想要的精度和噪声。基本上,测量时间或窗口越长,测量的噪声越少。噪声与测量时间的 平方根成反比,如下面的公式所示:
通过计算电容测量的标准方差,可以得到噪声。在Clarius软件中,使用 Formulator 可以自动完成这一计算。cap-meas-uncompensated 测试自动计算噪 声,把得到的值返回 Sheet。可以在 Test Settings窗口中,使用Custom Speed 自定义速度模式调节测量窗口,如图3所示。
图 3. Test Settings 窗口中的 Custom Speed自定义速度模式。
测量窗口的时间可以用下面的公式计算:
测量窗口 = ( 模数转换孔径时间 ) * (FilterFactor2 或滤波数 )
表 1. 1 fF电容器的测量时间相对于噪声关系。
表 1 列出了 CVU 噪声与测量窗口的关系,其使用 1 fF 电容器连接到 CVU 的端子,在 2 线配置下生成。 我们取15个读数的标准方差,使用0 V DC、1 MHz 和1 V AC驱动电压设置获得测量,计算出噪声。这一数据验证了噪声随测量时间提高而下降。注意 1 秒及以上测量时间的噪声为阿托法拉或 1 E-18F级。每个测试环境中可能要求进行实验,来确定测试的最优测量时间。
执行测量
一旦硬件和软件配置完成,我们就可以执行测量。在理想情况下,4200A-SCS应预热至少一小时,然后再进行测量。用下面四步获得补偿后的测量,重复测试结果。
1. 测量器件的电容。在项目树中选择 cap-meas-uncompensated 测试。在 Configure 视图中,根据 器件和应用调节测试设置。运行测试。
2. 测量开路。在项目树中选择 open-meas 测试。把 测试设置调节到与 cap-meas-uncompensated 测 试中的测试设置完全相同,包括数据点数和电压阶 跃数。只断开 CVH (HCUR 和 HPOT) 电缆。确保未 端接的电缆盖上帽子。运行开路测试。
3. 分析结果。在项目树中选择 femtofarad-capaci-tance 项目,选择 Analyze 视图。图 4 是显示了补偿后的 1 fF 测量的截图。
图 4. Analyze 视图Sheet表单和Graph示图截图显示了 1 fF测量。
注意最新电容和开路测量及噪声计算出现在 Sheet中。来自项目树中所有测试的Data Series出现在屏幕右侧。如图5所示,我们选择了从capmeas-uncompensated和 open-meas 测试中获得的 Latest Run 最新一轮测量的Series List 系列列表。这意味着 每次执行测试时,Sheet 表单中都会填写最新数据。
图 5. 来自测试的 Data Series。
Formulator中已经设置了一个公式, 在 Project级Analyze视图表单Sheet 中, 从 cap-meas-uncompensated 测试数据中减去 open-meas 测试数 据,自动计算补偿后的电容测量。图表显示了补偿后 的电容随时间变化情况。Sheet中的 CAPACITANCE 栏列出了补偿后的测量以及所有读数的平均电容。图6显示了 Latest Run Sheet 最新运行表单数据及电容 测量 (Cp-AB)、时间、噪声、开路测量、补偿后的测 量 ( 电容 ) 和平均电容(AVG_CAP)。
图 6. Analyze 视图表单 Sheet 中显示的测试数据。
4. 重复测量。选择Run,可以从项目级重复测量,将自动计算补偿的读数。但是,一定不能勾选 open-meas测试,如图7所示。如果数据以非预期的方式运行,应定期重复采集的开路测量。这可能是由温度偏移或电缆移动引起的。
图 7. 不要勾选 open-meas 测试,从项目级 Analyze 视图中重复测量。
总结
通过使用 Library 项目、正确连接和相应的测量技术 和设置,我们可以使用 4215-CVU 测量飞法级电容。使用 4215-CVU 及相应的测量窗口,可以实现几十阿托法托及以下的噪声。
上一篇:Covid-19让热成像探测器“红”遍全球
下一篇:基于阿里云的安全检测方案让您吃得更安心
推荐阅读最新更新时间:2024-11-12 15:29
- 使用 Microchip Technology 的 DVR2802B3 的参考设计
- EVAL-ADF4158EB1Z,ADF4158 小数 N 分频 PLL 频率合成器评估板
- LT3091MPT7 低噪声单电感正负转换器的典型应用
- 使用 NXP Semiconductors 的 MPC17511EVEL 的参考设计
- DC1959A-A,具有 LTC6948-1 超低噪声和杂散整数 N 频率合成器和集成 VCO 的演示板
- DC2392A,用于 LTC7860 高压开关浪涌抑制器的演示板
- LM2904VDMR2G 维恩桥振荡器的典型应用
- LT1009 系列的典型应用 - 2.5V 基准
- AD8657ARMZ-R7同相运算放大器配置的典型应用电路
- AM1S-0303SZ 1W DC-DC转换器典型应用
- 报名、参会赢京东卡:意法半导体 NFC 研讨会2024-北京站
- 有奖直播:8月21上午10:00 泰克助您应对现在及未来的测试挑战!
- 2021年STM32中国峰会暨粉丝狂欢节 报名啦!
- 3月21日有奖直播:ADI新一代高阻抗输入SAR ADC的优势与应用
- 下载有礼|ADI 用于多路抽头输出隔离电源的简易解决方案
- 栅极驱动挑花眼?看英飞凌来支招
- 免费测评乐鑫ESP32-C3-DevKitM-1
- 【EEWORLD第二十三届】2011年02月社区明星人物揭晓!
- ADI有奖下载活动之18 ADI双光束分光光度计演示系统和解决方案
- 【看电源研讨会,瓜分3000元红包】 如何正确完成模块化DC-DC系统设计