在学习如何使用示波器来减小噪声之前,我们先来了解下示波器的噪声是怎么来的。
许多刚从模拟示波器转到使用数字示波器的人可能会抱怨,说他新买的示波器测出来的波形还不如自己那台老式的模拟示波器清晰,甚至怀疑自己买到的示波器是不是坏的。那么,真的是示波器坏了吗?
要知道,示波器的作用是还原真实的信号,性能越高的示波器,越能观察到信号的更多细节,而这些细节往往是发现异常问题的关键。在实际使用过程中,周围环境中的干扰是实实在在存在的,噪声不可能被完全地消除。事实上,示波器的带宽越高,采集到的噪声信号就会越多。低性能示波器的灵敏度很低,在选择无视这部分干扰的同时,也漏过了很多信号本身的有用信息,从而无法进行有效正确的分析。
许多因素都会影响示波器上波形的显示,我们所看到的信号肯定不是100%完整的真实信号,它和我们所用的探头类型,测量方式,是否接地,以及各种示波器设置都有关联,比如垂直档位设置,存储深度、实时采样率的大小,采样的方式,示波器的带宽,显示的模式(如余晖显示)等等。
当示波器采集信号的能力越接近真实,屏幕上就越可能会出现噪声干扰,那么我们是不是对这些噪声就束手无策了呢?当然不是,新一代的高性能示波器,对于信号提供了更多样的处理方式,下面我们就来一一了解:
条件垂直档位,尽量使波形占满屏幕
很多使用示波器的人可能都有一个“坏习惯”,就是测量多个信号的时候,为了避免各个信号重叠显示影响观察,就会调节垂直档位,把各个信号缩小显示。实际上,受垂直分辨率等因素影响,波形是越占满整个屏幕,就越精准的,同时也可以减小噪声信号,而且示波器厂家标注的直流增益精度(一般是1-2%)也都是指波形在满屏的情况下的精度。
可以看到,即使在其他条件相同的情况下,不同的垂直档位测量出来的数值亦是不同的,波形越占满屏幕,测量的值就越精准。
选用合适的探头
1X无源探头的输入无衰减,输入阻抗基本不计,加上示波器内部本身的1MΩ,总输入阻抗也就为1 MΩ;10X高阻无源探头的输入阻抗一般为9MΩ,示波器内部的输入阻抗为1MΩ,总输入阻抗为10MΩ。对于10X探头,信号从测试点到示波器器采样点处有一个10倍衰减,示波器采样到的电压幅度是实际被测电压幅度的1/10。不同衰减倍数的探头测量的范围也不同。
采样率、存储深度(记录长度)对信号的影响
当波形的记录时长固定时,采样率和存储深度是一次函数关系:采样率 = 存储深度 ÷ 波形记录时长
采样率决定了示波器采集信号多少的能力,而存储深度决定了示波器一屏幕最多可以存储多少信号数据。可以想象,存储深度如果太低,大多数的信号信息都没法被显示出来,自然波形只会严重失真,更谈不上精准了。
比如我们测试一个方波信号,在其它条件相同只改变存储深度的情况下,可以看到28K存储深度时,实时采样率是2KSa/s,原本的方波已经变成了锯齿波,波形都变形,已经谈不上精准了。而且根据奈奎斯特采样定理,实时采样率和被测信号频率也有关。当存储深度设置为28M的时候,实时采样率为2MSa/s,方波依然是方波。
使用高低通带宽限制
之前说过,同样的信号在模拟示波器里看起来可能更“干净”,一方面也是因为模拟示波器的带宽低,从而无法捕捉到很多高频的噪声导致,但这并不意味着真实中这些噪声信号不存在。同样的,数字示波器通过高低通带宽限制功能,也能达到减小噪声的效果。
这里最常用的应该就是“20M”了,即低通20M,仅允许 20MHz 以下频率的信号通过,20MHz 以上的信号被有效衰减。对付高频信号噪音十分有效。
使用平均采样模式
使用平均采样模式可平均多个采集结果,以减少所显示信号中的随机或无关噪声。平均多个 采样结果需要稳定的触发。 平均的数目可在平均采样模式后的选择框内进行设定,可设为 2、4、8、16、32、64、128、 256 共八个量级。 平均数目越高,显示的波形对波形变化的响应就越慢。必须在波形对变化的响应速度与信号上所显示噪声的降低程度之间进行折衷。
关键字:示波器 波形噪声 探头
引用地址:
如何用示波器减小波形噪声
推荐阅读最新更新时间:2024-11-09 11:19
数字示波器的触发器如何使用?
上半部分,我们聊到示波器触发概述和脉冲宽度触发。下半部分则将着重介绍:延迟触发和噪声抑制及滞后。 让我们开始“触发”吧! 延迟触发 示波器采集工作的时间线: 触发器自行启动并开始寻找事件,如果启用了自动模式,则在一定时间后超时。一旦触发发生,采集缓冲区继续填充,然后将数据传输到计算机上进行处理和测量。 一旦这些都完成了,触发电路就会重新启动。从触发发生到示波器可以重新启动的这段时间,它就不再观察信号了,我们称之为死区时间。延迟是我们可以在触发电路重新启动之前添加的额外时间。 任一触发器都准备好上升沿供示波器捕获并显示它。然后添加了600 毫秒的延迟,导致触发器等待重新启动。现在触发器被激活并寻找下沿。但由于我们错过了下
[测试测量]
寄生电容所带来的影响
在新版的裁判系统中,增加了感光条对于车模通过进行检测与计时。相比与原来的电磁感应方式,它具有一定的优点:比如,检测灵敏度高,对于外界的电磁干扰具有很强的免疫能力。而且由于是PCB定制,形状固定,一致性好。但它对于环境光线急剧变化较为敏感,特别是周围活动的人影变化也会误触发计时系统,这一点它又不如电磁感应稳定。 因此在新版的竞赛系统中兼容了这两种传感器以便应用到各自适合的场合。 下图是一条焊接好的感光板,它应用了黄色LED对于光线比较敏感的特性来检测车模通过时所带来的光线变化。 下面是上述感光板的电路图,将45个LED串联之后连接在电源与三极管的基极之间。在有光照的情况下,LED会有一定的反向电流流过。当
[测试测量]
示波器是什么 常用示波器类型介绍
示波器是用于任何形式的电子测试的最广泛使用的测试仪器之一,无论是用于射频设计、通用电子电路设计、电子制造、服务、维修还是用于更多应用。 因此,有许多类型的 os 示波器可用。技术已经向前发展,模拟让位于数字,以及各种形式的示波器,以满足电子电路设计、电子制造和更多领域不断增长的需求。 在选择要购买的示波器时,有必要了解不同类型的示波器是什么,以及它们能够测试什么。有些类型甚至将示波器与逻辑测试或频谱分析相结合,为调试数字设计或射频设计中的电路提供了更强大的功能。 常用示波器类型 虽然可以以不同的方式对示波器进行分类,但在各种制造商的文献中提到并在书籍和网上讨论的示波器的主要类型在下面的列表中进行了详
[测试测量]
一台示波器,如何轻松搞定电源信号完整性测试?
开关电源的质量直接影响到产品的性能及其安全可靠性。电源测试项目多,计算量大,统计繁琐等问题一直困扰着工程师们,本文将对开关电源的几个重要测试项目进行讲解。 示波器电源测试分析主要实现使用示波器来对电源(开关电源)进行相关测试,提高电源开发人员的工作效率,方便对电源模块进行测试。主要涉及开关电源(AC/DC)有关测试。 在大多数现代系统中,流行的DC电源结构是开关电源(SMPS),这种电源因能够高效处理负载变化而闻名。典型SMPS的电源信号路径包括无源元件、有源元件和磁性元件。SMPS最大限度地减少了有损耗的元件的使用量,如电阻器和线性模式晶体管,重点采用(在理想条件下)没有损耗的元件,如开关式晶体管、电容器和磁性元件。其主
[测试测量]
TDR测量的基本原理与应用
随着科学技术的不断发展,对各数字接口的速度要求越来越高,对信号完整性的要求随之越来越严苛。控制阻抗,是信号完整性重要要求之一,TDR是测量特性阻抗的基本技术。今天就来介绍下TDR测量的基本原理与应用。 TDR(Time Domain Reflectometry )称为时域反射计,是利用信号的反射来评估链路中阻抗变化的程度。它基本的工作原理见下图:T****DR测试设备的输出阻抗是50欧姆,通过50Ω线缆连接到待测链路DUT,设备输出一个上升沿非常抖的阶跃信号给待测的传输环境,如果待测传输环境阻抗不连续,那么将会发生反射(正反射或负反射),反射的信号被采样,设备把待测环境的反射与标准阻抗生产的反射进行比较,就可以得到阻抗变化量,
[测试测量]
逻辑分析仪探头如何实现正确连接,需注意哪些问题
引言 为了完成今天越来越复杂的数字系统的设计, 工程师需要完善的分析工具。对于系统验证任务, 大多数工程师都要依靠逻辑分析仪。随着被测系统速度的不断提升和复杂程度的持续增加, 逻辑分析仪厂商也及时提高了仪器的性能和功能, 以满足工程师的需求。在许多情况下, 逻辑分析仪主机的性能往往超过手头任务的需要, 而从分析仪到目标系统的探头物理连接则成为系统性能的瓶颈。如果逻辑分析仪接收到的信号有畸变, 那么逻辑分析仪的强大触发和分析工具将是无用武之地。 这篇应用指南将讨论实现成功逻辑分析仪探头连接, 需要考虑的探测问题。我们将介绍探头结构形式选择、探头负载和信号质量概念, 以及与接地有关的常见问题。最后讨论两种容易犯的错误: 在错误的引
[测试测量]
电压探头的定义及其主要的各项性能指标
电压探头和电流探头的区别是一个内部是电压表,另外一个内部是电流表,其实内部的表头都是电流表,只不过电压表的表头串联了一个电阻,而电流表是表头并联去一个电阻。 示波器电压探头种类: 示波器电压探头按照是否需要供电可分为无源探头和有源探头,其中无源探头按照输入阻抗大小又分为低阻探头和高阻探头,为减小探头输入阻抗对信号的负载效应,开关电源信号测量中常用的无源探头为高阻探头;有源探头按照所测信号类型可分为单端探头和差分探头,单端探头用以测量单端对地信号,差分探头用以测量双端互为参考的信号。 此外,根据待测电压大小,电压探头又分为高压探头和低压探头;根据带宽大小,电压探头又分为高带宽探头和低带宽探头。图1为几种典型的示波器电压探头,
[测试测量]
仪器保养 | 安捷伦DSO-X 2002A示波器自检测/自校准
安捷伦DSO-X 2002A示波器自检测、自校准 首先上电开机 1. 按下Utility-服务-Diagnostics-硬件本机自检-前面板自检 2. 按下Utility-服务-Calibration--按下后盖CAL-开始用户校准-根据提示完成操作 感兴趣的话就跟安迪一起来学习吧~
[测试测量]