示波器探测需要避免的七大常见错误

发布者:创意小巨人最新更新时间:2021-04-01 来源: eefocus关键字:示波器  探测  常见错误 手机看文章 扫描二维码
随时随地手机看文章

了解常见的示波器探测错误以及如何避免这些错误,这将帮助您更好地进行测量。


在理想情况下,所有示波器探头都应该是一条不会对被测设备产生任何干扰的导线,当连接到您的电路时,具有无穷大的输入电阻,而电容和电感为零。这样将会精确复制被测信号。但现实情况是,示波器探头会给电路带来负载效应。探头上的电阻、电容和电感元件可能改变被测电路的响应。


每个电路都不尽相同,它们有自己的电气特性。因此,每次探测设备时,都需要考虑示波器探头的特性并选择对测量影响最小的探头。考虑的范围包括从示波器输入端通过电缆到被测设备上特定连接点的完整连接,也包括用于连接到测试点的任何附件或附加导线和焊接。


错误 1 - 没有校准探头

探头在交付给您之前已进行过校准,但它们没有针对示波器前端进行校准。如果它们未在示波器输入端上进行校准,那么就无法得到测量结果。


示波器有源探头

如果您的有源探头没有针对示波器进行校准,您将看到垂直电压测量结果和上升沿时序(以及可能的一些失真)出现差异。大多数示波器具有参考或辅助输出功能,还配有指南来引导您完成探头校准。


图 1 显示了通道 1(黄色迹线)上的 SMA 电缆和适配器输入到示波器的 50 MHz信号。绿色迹线是通过通道 2 上的有源探头输入到示波器的同一信号。请注意,通道 1 上的发生器输出为 1.04 Vpp(伏特峰峰值),通道 2 上探测到的信号为 965 mV (毫伏)。另外,通道 1 与通道 2 的偏移高达 3 ms(毫秒),所以上升时间根本不能排成一行。

图 1:发生器输出和探测到的信号。

如果我们校准这个探头,结果将大为改善。您可以在图 2 中看到经过适当幅度和偏移校准后的结果。幅度现在改善为 972 mVpp,偏移得到了纠正,两个上升时间保持一致。

图 2:经过幅度和偏移校准后。

示波器无源探头

可以调节探头的可变电容,使补偿与正在使用的示波器输入完美匹配。大多数示波器都有可以用于校准或参考的方波输出。探测这个连接,检查波形是否为方形。根据需要调整可变电容,以消除所有下冲或过冲。


技巧:示波器可能有调节探头补偿的功能,您也可以手动更改。

将探头校准到与示波器保持一致,以获得被测信号最准确的表示。


错误 2 - 增加探头负载效应

只要将探头连接到示波器并将它与您的设备接触,探头就会成为电路的一部分。探头对您的设备施加的电阻、电容和电感负载效应会影响您在示波器屏幕上看到的信号。这些负载效应可能会改变被测电路的工作状态。了解这些负载效应,有助于您避免为特定的电路或系统选择错误探头。探头具有电阻、电容和电感特性,如图 3 所示。

图 3:探头的基本电路。

为了接触到周围环境过于狭小的探测点,可能需要想方设法添加长引线或电线。但是,为探头添加附件或探针会降低带宽、增加负载效应,进而导致频率响应不再 平坦。


通常,探针的输入线或引线越长,带宽减小得就越大。较窄带宽的测量可能不会受到太大影响,但在进行较宽带宽的测量时,特别是在 1 GHz 以上时,需要谨慎选择使用的探针和附件。随着探头带宽降低,您将失去测量快速上升时间的能力。图 4 演示了随着附件长度的增加,示波器显示的上升时间是如何变慢的。为了进行最准确的测量,最好使用尽量短的探针。

图 4:不同的探头引线长度对应的探头负载效应。

使用尽量短的引线来保持探头的带宽和精度。

另外,最好要使用较短的接地引线,因为它们越长,引入的电感就越多。保持接地线尽量短并尽量靠近系统接地点,以便确保可重复和准确的测量。


技巧:如果必须在探针上添加导线才能接触到难以到达的探测点,那么最好为探针添加一个电阻,以减弱所添加的导线引起的谐振。添加长引线时,您可能无法解决带宽限制问题,但可以将频率响应变平坦。为了确定将要使用的电阻大小,可以探测一个已知方波,例如示波器上提供的参考方波。如果电阻设置正确,您将会看到一个干净的方波(除了其带宽可能受限之外)。如果信号发生振铃,请增加电阻的大小。单端探头只需要在探针处增加一个电阻。如果您使用的是差分探头,请为每根引线添加一个电阻。

图 5:在探针上增加一个电阻,可以克服长探头连接所引起的谐振,减少振铃和过冲。但是,它不能解决由于添加引线导致的带宽限制。

使用电阻抑制因长探头引线导致的峰值。


错误 3 - 没有充分利用您的差分探头

许多人认为只有在探测差分信号时才使用差分探头。您是否知道,在探测单端信号时,也可以使用差分探头?这将为您节省大量时间和金钱,并提高测量的准确性。最大限度地利用差分探头,获得尽量最好的信号保真度。


差分探头可以进行与单端探头相同的测量,并且由于差分探头在两个输入端上有共模抑制,所以差分测量结果的噪声大为减少。这使您可以看到被测设备信号的更好表示,而不会被探测所增加的随机噪声误导。


请看下一页图 6 中的蓝色单端测量信号和图 7 中的红色差分测量信号。蓝色的单端测量结果与红色的差分测量结果相比,噪声要多得多,因为单端探头缺少共模校正功能。

图 6:单端测量

图 7:差分测量

差分探头可以执行与单端探头相同类型的测量,但共模抑制功能使其噪声明显降低。


错误 4 - 选择了错误的电流探头

大电流和小电流测量需要捕获的细节并不相同。您需要知道为应用选择哪种电流探头更合适,以及使用错误的探头可能会遇到哪些麻烦。


大电流测量:

如果使用钳形探头测量大电流(10A - 3000A),那么您的设备必须足够小,使钳形探头能够夹住它。如果设备太大使得钳形探头无法夹住,那么工程师可能会想办法在探头钳夹上添加额外的导线,但这会改变被测设备的特性。更好的办法是使用合适的工具。


最好的解决方案是使用具有柔性回路探头前端的大电流探头。您可以将该柔性回路缠绕到任何设备上。这种探头叫做 Rogowski 线圈。它可以让您在不添加未知特性元器件的情况下探测设备,使测量结果保持高度的信号完整性。它们还使您能够测量从 mA 级到数百 kA 的大电流。请注意,它们只测量交流电流,所以直流分量将被隔离。它们的灵敏度也低于某些电流探头。这对于大电流测量来说通常不是问题。但是在测量小电流时,灵敏度和查看直流分量的能力就变得很重要。请记住,对一种测量有效的方式并不一定适用于另一种测量。

图 8:缠绕到元器件上的 Rogowski 探针。

使用适合被测设备的大电流探头。


小电流测量

如果测量电池供电设备的电流,则动态范围会有很大差异。如果电池供电设备处于空闲状态或仅处理少量后台任务,其电流峰值会很小。当设备切换到更为活跃的状态时,电流峰值会大幅提高。使用垂直标度较大的示波器设置,您可以测量大信号,但小电流信号将被测量噪声掩盖。另一方面,如果您使用较小的垂直标度设置,那么大信号会削波,您的测量结果也将失真并失效。


选择的电流探头应该不仅能够测量从 μA 到 A 的宽量程,还可以使用多个放大器同时查看大小电流偏差。探头中的两个可变增益放大器允许您设置放大视图以查看小电流波动,还可以缩小视图以同时查看大电流尖峰(参见图 9)。

图 9:配有两个可变增益放大器的电流探头让您可以一次同时查看大小电流偏差。本例中展示的是 Keysight N2820A/21A 高灵敏度电流探头。

使用具有足够灵敏度和动态范围的小电流探头来捕捉信号的所有方面内容和细节。


错误 5 - 在纹波和噪声测量期间会错误地处理直流偏置

直流电源上的纹波和噪声是由较大直流信号上的小交流信号形成的。当直流偏置较大时,您可能需要在示波器上使用较大的每格电压设置才能在屏幕上显示信号。与小交流信号相比,这样做会降低测量的灵敏度并增加噪声。这意味着您无法获得信号交流部分的准确表示。


如果使用隔直流电容器来解决这个问题,那么将不可避免地阻隔部分低频交流内容,使您无法观察到信号在经过设备上的元器件时发生的变化。


使用具有较大偏置功能的电源探头,可以将波形置于屏幕中间,而无需移除直流偏置。这样可以让整个波形都显示在屏幕上,同时保持垂直标度较小且处于放大状态。通过这些设置,您可以查看瞬态、纹波和噪声的细节。

使用具有较大偏置功能的电源探头,可以不用消除信号的直流部分,便能查看瞬态、纹波和噪声的细节。


错误 6 - 未知的带宽限制

在进行重要测量时,务必选择具有足够带宽的探头。带宽不足会使信号失真,使您很难做出明智的工程测试或设计决定。

普遍接受的带宽计算公式为:评测从 10% 到 90% 的上升沿时,带宽乘以上升时间等于 0.35。

值得注意的是,您的整个系统带宽也是需要考虑的重要因素。探头和示波器的带宽都要考虑,从而确定系统带宽。计算系统带宽的公式如下所示。

例如,假设您的示波器和探头带宽均为 500 MHz。使用上面的公式可知,系统带宽将为 353 MHz。您可以看到,与探头和示波器的两个单独带宽相比,系统带宽大大降低。

现在,如果探头带宽仅为300 MHz,示波器带宽仍为 500 MHz,那么应用上述公式,系统带宽进一步降至 257 MHz。

探头和示波器组成了一个“系统”,对带宽的整体影响比它们单独的影响都要大。


错误 7 - 被掩盖的噪声影响

探头和示波器的噪声可能会导致被测设备的噪声显得更大。为您的应用选择具有合适衰减比的探头,将会减小探头和示波器所添加的噪声。因此,您就能够获得更准确的信号,更清晰地查看被测设备的情况。


许多探头制造商将探头噪声描述为等效输入噪声(EIN),并以 Vrms 为单位表示。较高的衰减比使您可以测量较大的信号,但缺点是示波器将检测到这些比率并同时放大信号及其噪声。为了了解这一效应的实际结果,图 10 中的绿色迹线显示了使用 10:1 探头放大后的噪声。

图 10:使用 1:1 和 10:1 探头测得的 50 mVp-p 正弦波。

有一种方法可以简单地估算探头噪声大小,这就是从探头的技术资料或手册中检索该探头的衰减比和探头噪声电平。

每个电路和测试环境都各不相同。在一个环境中有效的探头,在另一个环境中不一定仍有效。在有些使用场景中,使用附件是可以接受的。但在其他场景中,只有采用与被测设备最简单、最短的连接,才能实现成功测量。有些变通的测量方法对测试结果的影响相对较小。因此,您必须了解在每个测试场景中,使用何种工具和技术可以得到准确的测试结果。

关键字:示波器  探测  常见错误 引用地址:示波器探测需要避免的七大常见错误

上一篇:用示波器测频谱时,竟然有比FFT更好的方法
下一篇:示波器交叉实时采样 评测示波器采样率与采样保真度的关系

推荐阅读最新更新时间:2024-11-06 19:51

泰克示波器的使用方法
这些示波器使用说明教程将帮助您了解更多有关示波器基础的知识,包括重要的行业定义和基本测量概念。您还可以获得关于不同示波器使用方法及应用的较高级知识。 新版本!示波器基础指南 最近更新的这一示波器基础指南共60页,它提供了帮助您了解示波器基础知识和操作的良好教程。它解释了一些基本概念,包括信号完整性的重要性、示波器如何工作、如何解释波形测量结果等内容。即刻下载新版本! 示波器 探头基础指南 探头对示波器测量以及测量质量都非常重要。本探头基础指南共48页,它介绍了您在探头领域应当知道的所有知识:从探头的各种类型及其优点到为您的应用选择正确的探头、高级探测技术等等不一而足。 示波器附件 示波器海报 (新) 本海报
[测试测量]
泰克2011年春季创新论坛点亮未来设计
中国北京,2011年4月18日---泰克公司日前宣布,其最大的年度巡展“泰克2011年春季创新论坛”将于4月19日至26日在大中华区的新竹、台北、上海和深圳四地陆续举行。今年巡展的亮点包括为应对不断演变的技术标准和未来应用而设计的高速串行、光通信、嵌入式射频及视频解决方案。同时泰克还将邀请全球IT测试和验证咨询机构百佳泰(Allion Test Labs, Inc)及嵌入式系统开发工具领先提供商Total Phase加入,为从事下一代设计的工程师带来一场协作研讨会。欢迎有兴趣参加的业界同仁登录 www.tek.com.cn/TIF/ 报名。 高速和超高速信号测量(无论是对于高速总线接口或光通信)已经变得十分复杂,需要更多
[测试测量]
脉冲串长度测量
今天我们来看下如何用ZDS2022来测量脉冲串的长度?   按下【Measure】键,打开测量项选择菜单,旋转旋钮B选中脉冲串长度,长按旋钮B可查看脉冲串长度的帮助信息,原来ZDS2022示波器的脉冲串长度测量还能指定脉冲个数!返回到主界面,打开选项设置菜单可设置脉冲串的个数,可通过旋转旋钮A微调,旋转旋钮B粗调脉冲串个数,短按旋钮B可将脉冲串个数复位到1,我们将脉冲串个数设置为4。   图1 脉冲串长度帮助信息   图2 脉冲串长度测量   按下【Cursor】键,手动光标测量4个脉冲串的长度,手动测量结果与自动测量结果近似相等,自动测量更加方便!
[测试测量]
脉冲串长度测量
是德科技PAM-4测试技术解决方案照亮400G研发前景
新闻要点 : 行业领先的采样示波器,带宽指标高达100GHz,可用带宽高达140GHz,每个模块支持多达4个通道 高度集成化的PAM-4 误码分析仪,支持64GBaud,内置去嵌入、抖动注入和非线性眼图生成 华为使用Keysight M8196A 任意波形发生器演示其112Gbps PAM-4光信号传输系统 2017 年 4 月 25日,北京——是德科技近日宣布行业领先的400G通信研发方案,不仅打通了从建模、设计到发射和接收验证测试的所有环节,而且设计仿真阶段就可以使用仪器仪表中的测试软件来分析和验证,后期样品的研发验证也可以用前期的仿真工具进行推理演算,不同担心研发不同阶段因工具不同而带来的差异。 为进一
[测试测量]
TDS1012示波器常用操作方法
示波器介绍 示波器可分为两大类:模拟式示波器和数字式示波器。 模拟式示波器以连续方式将被测信号显示出来。 . 数字示波器首先将被测信号抽样和量化,变为二进位信号存贮起来,再从存贮器中取出信号的离散值,通过算法将离散的被测信号以连续的形式在萤幕上显示出来。 接下来以Tektronix TDS1012为例介绍示波器常用操作方法。 面板介绍 示波器面板主要由屏幕+功能按键+插座构成。 屏幕介绍 横坐标为扫描时间,纵坐标为电压大小。 探棒介绍 一般的示波器探头(类似于万用表的表笔)上,有一个×1档和×10档选择的小开关。当选择×1档时,信号是没经衰减进入示波器的。而选择×10档时,信号是经过衰减到1/10再到示波器
[测试测量]
TDS1012<font color='red'>示波器</font>常用操作方法
电子示波器结构方框图分析
  电子示波器用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测   按照信号的不同分类   模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。   数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是
[测试测量]
电子<font color='red'>示波器</font>结构方框图分析
超越边沿触发 使用示波器触发进行调试 
  简介   示波器是电气工程师的基础仪器,但我经常发现有些工程师不能有效地使用其触发功能。触发常被认为非常复杂,现在存在这样一种趋势,即如果有任何问题,直接到实验室去求助专家来帮助设置触发。本文的目的在于帮助工程师了解触发的基本原理以及有效使用触发的策略。   什么是触发?   任何示波器的存储器都是有限的,因此所有示波器都必须使用触发。触发是示波器应该发现的用户感兴趣的事件。换句话说,它是用户想要在波形中寻找的东西。触发可以是一个事件(即波形中的问题),但不是所有的触发都是事件。触发实例包括边沿触发、毛刺信号触发和数字码型触发。   示波器必须使用触发的原因在于其存储器的容量有限。例如,Agilent90000系列示波
[测试测量]
超越边沿触发 使用<font color='red'>示波器</font>触发进行调试 
基于STC12C5408AD的记忆示波器 (1)
  示波器是电子测量的基本仪器。由于其具有图形显示实时、直观和形象等特性,在一般的物理实验室中它也是常用仪器之一。众所周知,示波器是依据输入电压调制的电子束扫描、荧屏余辉以及人眼的暂留效应等原理制成的;它要求输入周期信号;对于非周期性的信号,普通示波器是无能为力的,必须使用具有记忆功能的专用示波器,但这种示波器价格高昂,一般的物理实验室无法大量配置。   信息时代,个人计算机大量普及。普通物理实验室以及一般的中学都已配备了大量的计算机(以下称PC)。但这些PC大都用于文字信息处理和计算工作,其内在的功能还远远没有发挥,实际上造成了巨大的浪费。   我们知道,PC具有很强的图像显示功能。如果能够开发、利用这一功能,配上外部接
[测试测量]
基于STC12C5408AD的记忆<font color='red'>示波器</font> (1)
小广播
最新测试测量文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved