ADC/DAC(3)- 数字示波器中ADC的选用

发布者:笑脸猫最新更新时间:2021-04-29 来源: eefocus关键字:ADC  DAC  数字示波器 手机看文章 扫描二维码
随时随地手机看文章

自己动手做一个信号发生器和示波器非常重要,不仅可以深刻理解测量仪器的工作原理、关键技术指标,还可以将书本上学过的模拟电路、数字逻辑乃至嵌入式系统全部串起来,从系统层面对各个部分的功能以及构成有更真切的认识,因此苏老师觉得这两个项目应该是所有电子工程师都要动手做一遍的基础入门项目。


高速ADC是数字示波器的核心部件,今天关于ADC应用的文章就结合我们摩尔吧/硬禾实战营的一个实际项目 - 100Msps的数字示波器的制作来做一个简单的案例分析,数字和处理部分将在将来的文章中具体分析,今天集中在模拟部分:

我们的项目对模拟部分的主要指标要求如下:

  • 单通道、100Msps采样率

  • 模拟带宽20MHz,输入电压的范围 - -10V ~ +10V

  • 最小分辨电压 10mV

经过高速ADC以后的数据通过FPGA(当时就用Lattice的FPGA)进行处理以后送到后面的Cortex M4控制器,再在LCD显示屏上显示出来,触发、测量电压、频率等参数都在FPGA内实现。

今天我们就以这个项目为例,简单分析一下数字示波器模拟链路部分的设计要点。
首先我们基于给出的指标需求分析一下:

  • 单通道 - 需要一颗单路的ADC

  • 100Msps - 需要一颗采样率在100Msps以上的ADC

  • 20MHz的模拟带宽 - 意味着最高频率20MHz的模拟信号,如果用100Msps的采样率,每个周期会有5个采样点,留给学员通过FPGA逻辑进行内插的空间

  • +/-10V的最大输入电压范围和最小10mV的电压分辨率意味着整个模拟链路以及ADC能够处理的信号的动态范围为20Vpp/10mV ~ 2000 ~ 63dB

第一个问题:选用多少位数的ADC?8、10、12、14、16位?ADC的精度的选用要和前面的模拟信号调理电路共同对付63dB的动态范围。理想状态下8位的ADC可以提供48dB的动态范围、10bit ~ 60dB、12bits ~ 72dB,14bits ~ 84dB,但由于存在着量化噪声,导致ADC的有效位数要低于实际使用的位数,也就是12位的ADC,有效的位数小于12(数据手册显示 - AD9628在采集20MHz的模拟信号的时候相当于11.6bits). 从这个分析上看,选用一颗12bits/100Msps的ADC就可以满足系统对动态范围的要求。


但,ADC的精度越高,意味着器件内部的资源大幅增加,器件的成本以及价格也就大幅增加,在同样的转换率的情况下,一颗12位的双通道ADC(AD9628-105)的价格比10位的双通道ADC(AD9608-105)要高出一倍(以其官网上1000+片的价格做参考),见下面的表格。这多花的十几美元是否可以通过10bit ADC + 可变增益运放甚至8bit ADC +可变增益运放来实现呢?

这就需要权衡,需要从系统层面来综合考虑,引入可变增益放大器可以提供几十个dB的可调增益范围,带来的挑战就是:

  • 运放器件本身的价钱、多出来的电路板空间的成本

  • 运放电路设计(需要仿真)和调试的难度 - 可调增益、要保证线性范围工作、周边器件的合理选用

  • 最难的可能是运放电路的供电 - 一般都是双轨、低噪声的电压,比如+/-5v或+/-10V,模拟电路的双轨供电可是难煞了很多工程师,做不好性能会达不到要求。

  • 放大电路的增益要可调节,如何调节?总不能用手拧电位计调节吧?需要VGA(电压控制增益)或模拟开关切换。电可调的电路会带来额外的复杂度以及成本。

说到这里是不是觉得头大了?是不是觉得自己的知识量不够了?这还仅仅是信号的幅度方面的要求,信号的频率呢,也就是对频带的要求呢?即便20MHz以内的模拟信号,你需要低通滤波器(防混叠),选用的模拟器件要考虑到增益带宽积是否满足要求、瞬间的响应速度是不是够、电压控制增益的范围内线性度如何?


从降低系统复杂度的角度出发,我们希望用一颗高速的ADC,比如14、16bit全部搞定最好,但杀鸡用牛刀显然也是不对的,毕竟要考虑到系统的成本,更重要的是即便从理论分析上14bit的ADC能够满足你的要求,但实际的电路中会由于电源噪声、时钟抖动等使得你使用更高分辨率的ADC没有意义。上篇文章中我们讲过(下面的表格),即便对于10MHz的模拟信号,用14bit的ADC,采样时钟边沿的抖动必须小于2ps,100MHz(10ns周期)的时钟抖动要小于2ps,你自己测一下你自己板子上用FPGA产生的100MHz的时钟的边沿抖动有多大?是否能小于2ps?

所以,如果你用14bits的ADC,那必须给你的ADC提供极小边沿抖动的采样时钟信号,意味着你的时钟源(一般PLL产生)要非常好,最好采用差分时钟信号传输、时钟以及ADC的电源去偶要格外注意、PCB的设计要很讲究。所以挑战会比较大。


越是采样频率高的示波器,高分辨率的ADC器件成本会更高,对时钟抖动的要求越高,成本也会大幅增加,比如500Msps的数字示波器,如果你做的产品不能卖到非常高的价格让你有足够的成本空间采用更好的器件,最好采用8bits的ADC。


因此在学员的实际项目制作中我们也尽量让学员选用8bit、10bit的ADC配合前端可调增益的放大器来实现63dB的动态范围,下面是几款当时我们推荐给学员选用的ADC的型号,具体型号的选用还要考虑到供电电压、功耗、数据接口方式、价格等要素。

在我们100Msps的项目中我们选用8位的AD9283作为ADC,63dB-48dB ~ 15dB的动态范围就通过可控增益的运放来实现。


由于输入的信号是+/-10V,而ADC一般的输入电压范围是2Vpp,所以需要对输入的电压信号先进行10:1衰减(-20dB),得到+/-1V的模拟信号,再通过0-20dB的可变增益控制来满足ADC的输入电平要求。


在ADC之前有一个低通滤波器用于对20MHz以上的信号做过滤,主要目的是防止20MHz以上的噪声通过采样混叠在被测信号的采样结果中。关于这部分的理论分析大家可以看一下抗混叠采样相关的技术文章。


以上我们简单分析了一下如何根据被采集信号的幅度范围来选取适当分辨率的ADC + 可变增益调理电路的组合,原则是考虑到电路的性能、可实现性、设计难度、系统成本等各因素后的综合折衷。


下面的这个图是我们设计的一款产品 - 500Msps的双通道高速数据采集系统的框图,使用的是8位、500Msps的ADC以及ZYNQ FPGA器件,可以通过以太网同上位机PC进行数据传输。压控放大器的增益控制电压是靠低速串行DAC实现。每一级电路的增益、带宽的设定原理同上。

END


关键字:ADC  DAC  数字示波器 引用地址:ADC/DAC(3)- 数字示波器中ADC的选用

上一篇:示波器终极指南
下一篇:示波器的 6 大高级使用技巧-基础进阶

推荐阅读最新更新时间:2024-11-17 13:28

STM32F1 ADC主要特性和结构框图解析
STM32F1 ADC简介 ADC(analog to digital converter)即模数转换器,它可以将模拟信号转换为数字信号。按照其转换原理主要分为逐次逼近型、双积分型、电压频率转换型三种。STM32F1 的 ADC 就是逐次逼近型的模拟数字转换器。 STM32F103 系列一般都有 3 个 ADC,这些 ADC 可以独立使用,也可以使用双重/三重模式(提高采样率)。STM32F1 的 ADC 是 12 位逐次逼近型的模拟数字转换器。它具有多达 18 个复用通道,可测量来自 16 个外部源、2 个内部信号源。 这些通道的 A/D 转换可以单次、连续、扫描或间断模式执行。ADC 的结果可以左对齐或右对齐方式存储在 1
[单片机]
STM32F1 <font color='red'>ADC</font>主要特性和结构框图解析
SAR切换电容ADC的基本原理
前言 用了这么久ADC,从没细看过ADC的内部原理和如何获得最佳精度,今天看到一篇ST的官方文档讲的不错,这里整理分享给大家。 SAR ADC内部结构 STM32微控制器中内置的ADC使用SAR(逐次逼近)原则,分多步执行转换。转换步骤数等 于ADC转换器中的位数。每个步骤均由ADC时钟驱动。每个ADC时钟从结果到输出产生一 位。ADC的内部设计基于切换电容技术。 下面的图介绍了ADC的工作原理。下面的示例仅显示了逼近的前面几步,但 是该过程会持续到LSB为止 SAR切换电容ADC的基本原理(10位ADC示例) 带数字输出的ADC基本原理图 采样状态 采样状态:电容充电至电压VIN。Sa切换至VIN,采样期间Sb开关闭合
[单片机]
SAR切换电容<font color='red'>ADC</font>的基本原理
STM32F0xx的ADC配置
STM32F0xx系列单片机基于ST官方标准库V1.5.0的ADC功能的配置 ADC.c文件 #include ADC.h uint32_t ADC1ConvertedValue = 0, ADC1ConvertedVoltage = 0; void ADC_GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); //端口配置 // GPIO_StructInit(&GPIO_InitStructure); GPIO_InitSt
[单片机]
超宽带系统中ADC 前端匹配网络设计
引言 传统的窄带无线接收机,DVGA+抗混叠滤波器+ADC 链路的设计中,我们默认ADC 为高阻态,在仿真抗混叠滤波器的时候忽略ADC 内阻带来的影响。但随着无线技术的日新月异,所需支持的信号带宽越来越宽,相应的信号频率也越来越高,在这样的情况下ADC 随频率变化的内阻将无法被忽视。为了取得较好的信号带内平坦度,引入了ADC 前端匹配电路的设计,特别是对于non-input buffer的ADC在高负载抗混叠滤波器应用场景下,前端匹配电路的设计在超宽带的应用中就更显得尤为重要。本文将以ADS58H40为例介绍ADC前端匹配电路的设计。 Non-input buffer ADC 内阻特性及其等效模型 理想ADC 的输入
[电源管理]
超宽带系统中<font color='red'>ADC</font> 前端匹配网络设计
数字示波器使用中的欠采样
当我把示波器调到和pwm周期一个数量级时,可以测出标准的pwm波形,然后当我把示波器周期调大时,发现在每格25ms时出现了一个神奇的波形,形状和pwm波形一致(图中是40%占空比),周期为7.5ms。2. 而且当我改变占空比和pwm频率时这个7.5ms的信号一直存在且周期不变,这是为什么呢? ^示波器扫描速度设置为5us/格显示波形 | 公众号留图^ None ^示波器扫描速度设置为5ms/格显示波形 | 公众号留图^ None ^示波器扫描速度设置为25ms/格显示波形 | 公众号留图^ 在制作和调试电子模块的过程中,可能会发现 一些奇怪的情况,有的同学感到非常玄妙。其中背后可能存在两方面的原因:一是复杂
[测试测量]
<font color='red'>数字示波器</font>使用中的欠采样
ADI推出能效最高的12、14和16位ADC
ADI ADA4805系列放大器采用动态功耗调节技术,可为便携式、电池供电和高密度数据采集设备提供首屈一指的失调漂移、压摆率、噪声和失真性能。 Analog Devices, Inc. (NASDAQ: ADI),全球领先的高性能信号处理解决方案供应商,近日面向要求超高精度和能效的高速数据采集系统推出低功耗轨到轨放大器ADA4805-1和ADA4805-2。 对于寻求实现高分辨率ADC数据手册规定的全部潜力的系统设计师来说,ADA4805-1(单通道)和ADA4805-2(双通道)放大器是静态电流低至495µA的唯一解决方案。 放大器的动态功耗调节(DPS)特性允许用户在ADC采样之间关闭放大器,实现对功耗的动态管理。
[模拟电子]
MAX1069 低功耗、14位逐次逼近型模数转换器(ADC)
MAX1069是低功耗、14位逐次逼近型 模数转换器 (ADC)。该器件具有自动关断、片上4MHz时钟、内部+4.096V基准和兼容于I²C、提供快速及高速模式的2线串行接口。   MAX1069采用单电源供电,工作在最高转换速率58.6ksps时功耗为5mW。AutoShutdown™在两次转换之间可关断器件,在1ksps吞吐率下使电源电流降至50µA以下。可选择的独立数字供电电压允许直接与+2.7V至+5.5V之间的数字逻辑接口。   MAX1069利用内部4MHz时钟对其单端模拟输入进行单极性转换。满量程输入范围由内部基准或外部提供的1V至AVDD范围内的基准电压决定。   四个地址选择输入端(ADD0-ADD3)允
[模拟电子]
MAX1069 低功耗、14位逐次逼近型<font color='red'>模数转换器</font>(<font color='red'>ADC</font>)
Intersil 推出低功耗紧凑封装的 12 位模数转换器
高性能模拟混合信号半导体设计和制造厂商Intersil公司(纳斯达克全球精选市场交易代码:ISIL)今天宣布, 推出全新 8 位、10 位、12 位 500MSPS 模数转换器系列。12 位的ISLA112P50 IRZ 500MSPS 模数转换器作为该系列的领衔产品,其功耗仅为 468 毫瓦,比所有12 位 500MSPS ADC 同类竞争产品都低 5 倍。 由于在采用ISLA112P50后,系统功耗会大幅降低,因此系统设计人员能够在单个系统中集成多个 ADC,而且不会出现高性能 ADC 常见的散热问题。此外,ISLA112P50 的低功耗还能够在不影响性能的情况下有助于延长电池使用寿命,从而让便携式或电池供电应用
[模拟电子]
Intersil 推出低功耗紧凑封装的 12 位<font color='red'>模数转换器</font>
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved