基于DSP的继电保护测试仪信号采集装置硬件设计

发布者:恬淡岁月最新更新时间:2022-01-27 来源: elecfans关键字:DSP  继电保护测试仪 手机看文章 扫描二维码
随时随地手机看文章

  随着电力行业的不断发展,目前国内使用的继电保护测试仪种类繁多,但是由于继电保护测试仪自身的性能直接影响着对继电保护装置的*价,因此测试仪的工作性能和稳定性尤为重要。虽然DL/T*-1997《继电保护微机型试验装置技术条件》对继电保护试验装置提出了明确的要求,规定了定期检验周期和检验项目,但因为没有相关的检测规程或规范,也没有现成的检测装置,这为继电保护测试仪的验收和周检带来了一定的困难。因此,需要这样一种数据采集装置来精确采集继电保护测试仪的各项数据,以便上位机对数据进行分析,从而对继电保护测试仪进行检定。

  1系统方案设计

  本文设计的数据采集装置专门用于继电保护测试仪器各项数据的采集。设计选用DSP作为数据采集装置的核心控制器。系统硬件总体结构如图1所示。系统由电压、电流采样电路,信号放大,低通滤波,同步信号的获取与识别,直流取样,模/数转换电路以及通讯模块电路等组成。


  本方案中,数据选择器选用AD公司生产的AD7502芯片。AD7502芯片为双四选一数据选择器,因此需要两片A/D转换器进行循环采样。模/数转换芯片选用的是TI公司推出的16位并行高速转换器ADS8515。主控制芯片选用TI公司的数字信号处理器TMS320F2812。TMS320F2812是32位定点高速数字处理器,最高工作频率150 MHz,该芯片采用改进的哈佛结构,片内有六条独立并行的数据和地址总线,极大地提高了系统的数据吞吐能力,32位的累加器、16位的硬件乘法器和输入、输出数据移位寄存器相结合,能快速地完成复杂的数值运算。因此TMS320F2812的计算速度非常高,可以满足系统的在线实时性要求。


  在与上位机通讯时,综合各种因素,本方案选用USB总线技术实现。USB接口芯片选用Philips公司的ISP1581。ISP1581是Philips公司推出的一款高性价比的USB 2.0接口芯片,它完全遵循USB 2.0规范,支持7个IN端点,7个OUT端点和一个固定控制IN/OUT端点。ISP1581支持USB 2.0的自检工作模式和USB 1.1的返回工作模式,可以在高速或全速条件下正常运行。ISP1581内部集成有串行接口引擎(SIE)、PIE、8 KB的FIFO存储器、数据收发器、PLL的12 MHz晶体振荡器和3.3 V的电压调整器。ISP1581与外部微控制器的通信主要通过一个高速通用并行接口来实现。它与微控制器的连接有两种模式:断开总线模式和通用处理器工作模式。在断开总线模式下,AD [7:0]为多路复用的8位地址/数据总线,DATA[15:0]为单独的DMA数据总线;在通用处理器工作模式下,AD[7:0]为单独的8位地址线, DATA[15:0]为16位控制器数据总线。此时,DMA将多路复用到DATA[15:0]控制器的数据总线上。本装置在硬件设计中将电路设计成通用处理器模式。


  2系统硬件设计

  2.1电压、电流采样电路设计

  本系统采集三相电压、三相电流以及中性线的两路电压和电流信号。电压和电流的采样电路类似,电压采用电压互感器,电流采用电流互感器,通过运放OPA2277组成电压和电流采样电路。电压采集电路如图2所示。图2中,T1为电压互感器。电压互感器出来的信号通过OPA2277处理后送入数据选择器AD7502的S1输入引脚。其他7路电压和电流信号分别送入AD7502的另外7个输入引脚。

  2.2程控滤波电路设计


  系统中选用数据选择器AD7502作为四路电压和四路电流信号的模拟开关。滤波电路选用OPA2277来实现,电路原理图如图3所示。其中,AD7502的A0,A1接DSP通用I/O口的GPIOB4,GPIOB5口,EN引脚接高电平。GPIOB4,GPIOB5输出不同值来控制AD7502不同通道的接通,从而将8路信号依次送人两片A/D转换器。


  2.3A/D转换电路与DSP接口电路的设计

  A/D转换器是模/数转换电路中的核心器件,在整个测量系统中占有重要地位。如果模/数转换器的位数低时,将引起较大的测量误差,本装置选用德州仪器(TI)公司的A/D芯片ADS8515作模/数转换器。ADS8515是采样率为250 KSPS的16位并行A/D转换器,输入电压范围能达到±10 V。ADS8515属于逐次逼近寄存器型(简称SAR型)A/D转换器,这种结构的转换器通过输入的模拟信号与比较器逐次比较来输出数字信号,是目前应用最多的转换器类型。 SAR型A/D转换器的功耗比较低,体积比较小,而且A/D内部通常具有采样保持器,它可以维持采样电压直到转换结束,且其转换速率很快。ADS8515和DSP的接口电路如图4所示。


  由于TMS320F2812的I/O电压是3.3 V电平,而ADC则是5 V电平,因此需要电平转换芯片74LVC245来实现隔离功能。ADS8515的控制是通过对片选信号CS、启动信号R/C以及对状态信号BUSY的查询来实现的。BUSY,CS,R/C,分别接DSP的中断信号引脚XINT1和通用 I/O接口GPIOB0,GPIOB1。为了保证双DSP的同步采样,防止数据输出时两DSP数据的串扰,采用将另一个DSP的片选信号CS和启动信号 R/C分别接DSP的通用I/O接口GPIOB2和GPIOB3的方法。这样可以保证双DSP同步采样,并依次读取两个A/D中的数据。


  2.4同步信号获取与识别电路设计

  为了实现A/D转换器的交流同步采样,本方案的设计电路如图5所示。方案选用多个OPA2277和比较器MAX998来组成信号的获取与识别电路,从而克服了非整周期采样带来的频率泄露误差,实现严格的同步采样和等间隔采样。图5中,K3C为继电器,用作开关使用,用来通断选择获取的一路交流电压信号和一路交流电流信号。OPA2277组成放大和滤波电路。二极管D2,D3的作用是保护比较器MAX998,防止电压过大而击穿MAX998。


  2.5DSP系统的设计

  DSP系统主要由DSP芯片、电源电路、时钟电路、仿真和测试电路组成。由于TMS320F2812的电源系统既有3.3 V的数字和模拟电源,又有1.8 V的数字电源,电源的安全和可靠是系统运行的根本保证,所以需要将常用的5 V电源转换成3.3 V和1.8 V电源。本设计选用TI公司的TPS767D318作为电源芯片,该芯片是专门为DSP的应用而设计的,可以提供3.3 V和1.8 V两路电压输出,其中每路输出均可提供最大为1 A的电流。TPS767D318同时具有电压监测功能。电源电路的设计如图6所示。此外,DSP的每个电源和地引脚不能悬空,数字模拟地要分离设计。

  由于本系统对时序的要求比较敏感,所以本系统的时钟电路选用3.3 V工作电压的外部有源晶振。该有源晶振相对无源晶振信号质量更好,而且比较稳定,连接方式相对简单。通常的用法是:一脚悬空,二脚接地,三脚接输出,四脚接电压。


  在对DSP系统进行硬件仿真时,可以通过JTAG边界扫描接口对DSP内部的数据存储器、程序存储器和控制寄存器进行在线监控,并能在TMS320F2812的开发环境CCS中把程序下载到DSP芯片进行硬件仿真。JTAG接口的原理图如图7所示。


  2.6通讯模块设计

  目前,数据采集系统多以ISA,EISA或PCI插卡的形式完成数据的传输,这些方式存在着开发调试比较困难、安装麻烦以及通用性和可移植性差等缺点,而且PC机上的插槽数量、地址、终端资源有限,导致这种方式的可扩展性差。目前,广泛应用的USB总线接口具有安装方便、高带宽、易于扩展等优点,已成为计算机接口的主流。本文选用专用的USB接口芯片来完成DSP与PC机的数据传输。USB 2.0芯片选用Philips公司的ISP1581。ISP1581与TMS320F2812的连接电路图如图8所示。ISP1581在上电时,通过BUS_CONF,MODE0,MODE1对接口进行设置,本设计中BUS CONF通过电阻连接至高电平,ISP1581工作在通用处理器模式,AD[0~7]是8位地址总线,DATA[0~15]是独立的数据总线。MODE0设为1,因此读写选通信号为8051类型。TMS320F2812的XCS0AND1作为ISP1581的片选信号。RREF引脚通过12 kΩ的精密电阻接地,提供精确的镜像电流。RPU引脚通过1.5 kΩ电阻器上拉。


  3结语

  研制了一种基于DSP技术的继电保护测试仪信号采集装置,以便检定继电保护测试仪的性能指标是否满足设计要求。文中重点介绍了数据采集装置的整体架构、基于DSP的数据采集装置的硬件组成和电路设计。该数据采集装置可以精确采集继电保护测试仪的各项数据,为继电保护测试仪的检定装置奠定了技术基础。

关键字:DSP  继电保护测试仪 引用地址:基于DSP的继电保护测试仪信号采集装置硬件设计

上一篇:集成运算放大器参数测试仪的校准方案
下一篇:土壤养分测试仪的详细介绍

推荐阅读最新更新时间:2024-11-12 10:41

基于DSP和FPGA的红外信息数据处理系统
现代空战中,光电对抗装备在战争中扮演着重要的角色,而红外侦测与跟踪系统由于采用的无源探测技术,因此与雷达等主动探测系统相比具有隐身性强、抗干扰能力好和小型化程度高等优点,受到业内的关注。新一代红外成像导引系统须具备高精度、处理速度快、实时性强且反应时间短等特点,这便要求图像处理计算机能满足图像处理中大数据量、复杂运算、实时性强、高传输率和稳定可靠等要求。文中从工作原理、硬件及软件3个方面介绍了基于DSP和FPGA芯片的红外信息数据处理系统设计方法。 1红外制导控制系统硬件总体设计 红外信息数据处理系统按照功能划分为两大板块,由图像信息处理板和控制信息处理板组成数据处理系统。其红外制导控制信息数据处理系统如图1所示。图像信息处理
[嵌入式]
基于<font color='red'>DSP</font>和FPGA的红外信息数据处理系统
一款快速稳定响应的DSP逆变电源模糊PID控制
引言 由于 逆变 器传递函数不易得到,而且电压输出经常波动,传统的单纯 PID 控制难以达到快速和稳定的响应,而模糊控制与PID相结合的控制方法,通过对误差量的变化实时分析,调整PID参数,达到快速响应和无差跟踪,可实现逆变 电源 的高精度实时控制。 模糊控制系统原理 模糊 PID 控制器以电压偏差e和偏差变化量ec作为输入,PID参数模糊自整定是找出PID三个参数与e和ec之间的模糊关系,在程序运行中通过不断检测e和ec,根据模糊控制原理对三个参数进行在线修改,以满足不同e和ec对控制参数的不同要求,从而使被控对象有良好的动、静态性能。其在线自校正工作流程如图1所示。 图中:ki、kp、kd分别为积分增益系数、比例增
[电源管理]
一款快速稳定响应的<font color='red'>DSP</font>逆变电源模糊PID控制
Nuance语音激活技术现可用于CEVA-TeakLite系列音频/语音DSP
CEVA 宣布在CEVA-TeakLite系列DSP上提供Nuance 的AI助力唤醒和语音激活技术套件。Nuance的语音激活功能可以轻松集成到任何嵌入式系统设计中,包括始终聆听的智能手机、IoT设备和智能家居个人助理,允许用户无需按下按钮激活助手来与这些设备交谈。多家一流智能手机OEM厂商已经整合了这款将于2018年春季推出的解决方案。 Nuance新兴解决方案副总裁Kenneth Harper表示:“Nuance处于对话式AI革命的前沿,使得人们能够自然而无缝地和机器沟通。针对低功耗嵌入式系统,CEVA-TeakLite DSP为我们市场领先的语音激活技术提供出类拔萃的低待机功耗,并且具有强大处理能力可运行额外语音算法以
[半导体设计/制造]
基于DSP和CAN总线的RTU的设计
远程测控终端(RTU) 作为体现“ 测控分散、管理集中” 思路的产品从20 世纪80 年代起介绍到中国并迅速得到广泛应用, 应用在变电站上的RTU 主要是实现现场电力参数的远程采集与控制命令的远程发布, 并将信息或结果组装成报文, 上送到控制中心或调度端。纵观国内外的RTU 产品, 逐步从集中式控制结构向模块化、分散式、开放性的系统控制结构发展。由于变电站的数据量和信息量大, 实时性要求高, 因此将具有强大、高效的运算能力和丰富外围接口电路的DSP 应用于RTU 的设计方案; 同时引入了开放性结构的CAN 现场总线引入, 运用于变电站现场数据的通信并由它组成了一个开放、可靠和实时的监控系统。   1 系统总体结构设计   RT
[模拟电子]
基于<font color='red'>DSP</font>和CAN总线的RTU的设计
简易的超声波干扰探测仪(基于DSP和模糊逻辑技术的超声波干扰探测器US0012)
一些简易的超声波干扰探测仪并不需要配μP,具体电路如图所示。将SEL40k端接地时,可由400kHz压电陶瓷振荡器产生时钟信号。C2和C3为振荡电容,电容量可取100pF。灵敏度编程信号可通过小型直拨开关来设定。从主控制端输出的ALARM报警信号直接送给控制电路。LED为发光二极管,R1为限流电阻。
[嵌入式]
简易的超声波干扰探测仪(基于<font color='red'>DSP</font>和模糊逻辑技术的超声波干扰探测器US0012)
软件无线电设计中ASIC、FPGA和DSP的选择策略探讨
ASIC、FPGA和DSP的应用领域呈现相互覆盖的趋势,使设计人员必须在软件无线电结构设计中重新考虑器件选择策略问题。本文从可编程性、集成度、开发周期、性能和功率五个方面论述了选择ASIC、FPGA和DSP的重要准则。 软件无线电(SDR)结构一直被认为是基站开发的灵丹妙药,而随着其适应新协议的能力不断增强,软件无线电结构已被一些设计人员视为在单个基础架构设计中支持多种无线协议的重要解决方案。直到最近,软件无线电仍然只是大多数通信系统设计人员的规划蓝图而已,但这一局面正迅速得到改观。随着3G无线业务的日趋临近,设计人员又对在基础架构设计中实现软件无线电结构产生了浓厚的兴趣。 实现软件无线电 传统的无线基础架构设计可采用ASIC、D
[嵌入式]
软件无线电设计中ASIC、FPGA和<font color='red'>DSP</font>的选择策略探讨
基于DSP嵌入式技术的智能刹车控制系统电路设计
  硬件电路设计上采用DSP芯片和外围电路构成速度捕获电路,电机驱动控制器采用微控制芯片和外围电路构成了电流采样、过流保护、压力调节等电路,利用CPLD实现无刷直流电机的转子位置信号的逻辑换相。赛车刹车控制器是由防滑控制器和电机驱动控制器组成。两个控制器都是以DSP芯片为核心。防滑控制器主要是以滑移率为控制对象,输出给定的刹车压力,以 DSP芯片为CPU,外加赛车和机轮速度信号调理电路等。电机驱动控制器主要是调节刹车压力大小,并且控制电动机电流大小,也是以DSP芯片为CPU,再加外围电路电动机电流反馈调理电路、过流保护电路、刹车压力调理电路、四组三相全桥逆变电路等构成电机驱动控制器。   信号处理电路      赛车防滑控制器主
[嵌入式]
TS101S型DSP与PCI总线的简易接口设计
1 引言 DSP+PCI数字信号处理方案可利用PC的强大功能实现对DSP的操作控制、数据分析和操作监视等。例如系统无需再有专门的人机界面(如键盘、监视屏),只需将数据上传至PC中显示即可。也可将PC作为主控机实现对数据流上下行的控制和工作模式选择等。DSP+PCI方案能充分满足数字图像、语音处理、高速实时数据处理等领域的应用,为DSP系统的低成本实现提供了解决方案。 2 TS101S型DSP介绍 本系统采用美国Analog Device公司的高性能TIGER SHARC 101S(简称TS101S)作为主处理器。TS101S处理器劫持32bit和64bit浮点,以及8、16、32和64bit定点处理。它的静态超量结构使其每周期
[嵌入式]

推荐帖子

运放的参数和选择
偏置电压和输入偏置电流在精密电路设计中,偏置电压是一个关键因素。对于那些经常被忽视的参数,诸如随温度而变化的偏置电压漂移和电压噪声等,也必须测定。精确的放大器要求偏置电压的漂移小于200μV和输入电压噪声低于6nV/√Hz。随温度变化的偏置电压漂移要求小于1μV/℃。低偏置电压的指标在高增益电路设计中很重要,因为偏置电压经过放大可能引起大电压输出,并会占据输出摆幅的一大部分。温度感应和张力测量电路便是利用精密放大器的应用实例。低输入偏置电流有时是必需的。光接收系统中的放大器就必须具有低偏
fish001 模拟与混合信号
【菜鸟求助】请问板子连接PC以后正常反应是啥?碰到一点问题!!
调式的时候说:“theselectioncannontbelaunched,”然后板上一个绿灯一直亮着,两个LED一红一绿闪烁?这是什么情况,我承认我我真的超级菜鸟,。。。折腾了半天了【菜鸟求助】请问板子连接PC以后正常反应是啥?碰到一点问题!!驱动装完了没
mya1994 微控制器 MCU
小憩一哈。。全表情哈
:lol:lol:lol:lol:lol:lol:lol小憩一哈。。全表情哈
liuyong1989 电源技术
TPS546D24_C23动态调压
根据PMBUS1.3.1版本协议,第二节8.2部分,本文将简述如何通过VOUT_COMMAND进行动态输出电压调节的方法,该方法适用于linear格式的所有PMBUS设备(TPS546C23,TPS546D24和多相控制器)。调压有几个步骤,以TPS546C23为例。TPS546C23的调压实质上是调节其内部的参考电压(EA_REF)。1.确定输出电压调压需求:对于一个750mV典型输出,设定其调压需求为15%,即:2.由外围硬件电阻分压比值,确定内部参考电压
qwqwqw2088 模拟与混合信号
HB1-SE33P
论坛里的大神们!谁手里有HINT公司的HB1-SE33P芯片手册,麻烦给我发一份,邮箱:sunhongwei1983@126.com,小弟不胜感激,跪谢!HB1-SE33P
孙红伟 FPGA/CPLD
DCDC反向预充
有做过DCDC反向预充的吗,拓扑如上,低压侧(右边)反向给高压侧(左边)母线电容充电。技术方案我已经知道了,但参数设计和仿真模型搞不出来,有大佬会吗?DCDC反向预充变压器的参数需要知道吧搜一下MPS的有现成方案TI也有一款芯片反向DCDC的华为手机的反充你可以去b站搜搜看有拆解能看到芯片。纯属好奇,开发这个功能的目的是什么呢?
爱干饭 汽车电子
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved