虚拟仪器的软硬件系统设计在现场总线中的应用

发布者:Haifeeng最新更新时间:2022-04-20 来源: elecfans关键字:虚拟仪器  软硬件系统  现场总线 手机看文章 扫描二维码
随时随地手机看文章

1、引言

PXI(PCI面向仪器的扩展)是一个新的模块化仪器平台,它能够提供高性能的测量,而价格并不十分昂贵。利用PXI模块化仪器,您可以充分享受开放式工业标准化PC技术所带来的低成本、简便易用性、灵活性及高性能等优点。PXI的核心技术是CompactPCI工业计算机体系结构、Microsoft Windows 软件及VXI的定时和触发功能。


2、电子测量仪器的发展

电子测量仪器发展至今,大体可分为四代:模拟仪器、数字化仪器、智能仪器和虚拟仪器。


第一代模拟仪器,这类仪器在某些实验室仍能看到,如指针式万用表、晶体管电压表等。


第二代数字化仪器,这类仪器目前相当普及,如数字电压表、数字频率计等。这类仪器将模拟信号的测量转化为数字信号测量,并以数字方式输出最终结果,适用于快速响应和较高准确度的测量。


第三代智能仪器,这类仪器内置微处理器,既能进行自动测试又具有一定的数据处理能力,可取代部分脑力劳动,习惯上称为智能仪器。它的功能块全部都是以硬件(或固化的软件)的形式存在,相对虚拟仪器而言,无论是开发还是应用,都缺乏灵活性。


第四代虚拟仪器,它是现代计算机技术、通信技术和测量技术相结合的产物,是传统仪器观念的一次巨大变革,是将来仪器产业发展一个重要方向。


3、什么是虚拟仪器

虚拟仪器(Virtual Instruments,简称VI)的概念,是美国国家仪器公司(NaTIonal Instruments Corp.简称NI)于1986年提出的。虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通讯及图形用户界面的软件组成的测控系统;是一种由计算机操纵的模块化仪器系统。

虚拟仪器的软硬件系统设计在现场总线中的应用

3.1、虚拟仪器的优点

与传统仪器相比,虚拟仪器有以下优点:

(1) 融合计算机强大的硬件资源,突破了传统仪器在数据处理、显示、存储等方面的限制,大大增强了传统仪器的功能。高性能处理器、高分辨率显示器、大容量硬盘等已成为虚拟仪器的标准配置。

(2) 利用了计算机丰富的软件资源,实现了部分仪器硬件的软件化,节省了物质资源,增加了系统灵活性;通过软件技术和相应数值算法,实时、直接地对测试数据进行各种分析与处理;通过图形用户界面(GUI)技术,真正做到界面友好、人机交互。

(3) 基于计算机总线和模块化仪器总线,仪器硬件实现了模块化、系列化,大大缩小系统尺寸,可方便地构建模块化仪器(Instrument on a Card)。

(4) 基于计算机网络技术和接口技术,VI系统具有方便、灵活的互联(connecTIvity),广泛支持诸如CAN、FieldBus、PROFIBUS等各种工业总线标准。因此,利用VI技术可方便地构建自动测试系统(ATS,AutomaTIc Test System),实现测量、控制过程的网络化。

(5) 基于计算机的开放式标准体系结构。虚拟仪器的硬、软件都具有开放性、模块化、可重复使用及互换性等特点。因此,用户可根据自己的需要,选用不同厂家的产品,使仪器系统的开发更为灵活、效率更高,缩短了系统组建时间。


3.2、虚拟仪器的硬件系统

虚拟仪器的硬件系统一般分为计算机硬件平台和测控功能硬件。

计算机硬件平台可以是各种类型的计算机,如普通台式计算机、便携式计算机、工作站、嵌入式计算机等。计算机管理着虚拟仪器的硬软件资源,是虚拟仪器的硬件基础。计算机技术在显示、存储能力、处理性能、网络、总线标准等方面的发展,导致了虚拟仪器系统的快速发展。


按照测控功能硬件的不同,VI可分为GPIB、VXI、PXI和DAQ四种标准体系结构。

(1) GPIB(General Purpose Interface Bus)通用接口总线,是计算机和仪器间的标准通讯协议。GPIB的硬件规格和软件协议已纳入国际工业标准--IEEE 488.1和IEEE 488.2。它是最早的仪器总线,目前多数仪器都配置了遵循IEEE 488的GPIB接口。典型的GPIB测试系统包括一台计算机、一块GPIB接口卡和若干台GPIB仪器。每台GPIB仪器有单独的地址,由计算机控制操作。系统中的仪器可以增加、减少或更换,只需对计算机的控制软件作相应改动。这种概念已被应用于仪器的内部设计。在价格上,GPIB仪器覆盖了从比较便宜的到异常昂贵的仪器。但是GPIB的数据传输速度一般低于500kb/s,不适合于对系统速度要求较高的应用。(标准接口总线在20m距离内,若每2m等效的标准负载相当于使用48mA的集电极开路式发送器,则最高工作速率是250kb/s,若采用三态门发送器,一般速率为500kb/s,最高可达1000kb/s。)

(2) VXI(VMEbus eXtension for InstrumentaTIon)即VME总线在仪器领域的扩展,是1987年在VME总线、Eurocard标准(机械结构标准)和IEEE 488等的基础上,由主要仪器制造商共同制订的开放性仪器总线标准。VXI 系统最多可包含 256个装置,主要由主机箱、“0槽”控制器、具有多种功能的模块仪器和驱动软件、系统应用软件等组成。系统中各功能模块可随意更换,即插即用组成新系统。目前,国际上有两个VXI总线组织。①VXI联盟,负责制定VXI的硬件(仪器级)标准规范,包括机箱背板总线、电源分布、冷却系统、零槽模块、仪器模块的电气特性、机械特性、电磁兼容性以及系统资源管理和通讯规程等内容;②VXI总线即插即用(VXI Plug&Play,简称VPP)系统联盟,宗旨是通过制订一系列VXI的软件(系统级)标准来提供一个开放性的系统结构,真正实现VXI总线产品的“即插即用”。这两套标准组成了VXI标准体系,实现了VXI的模块化、系列化、通用化以及VXI仪器的互换性和互操作性。VXI的价格相对较高,适合于尖端的测试领域。

(3) PXI(PCI eXtension for Instrumentation)PCI在仪器领域的扩展,是NI公司于1997年发布的一种新的开放性、模块化仪器总线规范。其核心是 CompactPCI结构和Microsoft Windows软件。 PXI是在PCI内核技术上增加了成熟的技术规范和要求形成的。PXI增加了用于多板同步的触发总线和参考时钟、用于精确定时的星形触发总线、以及用于相邻模块间高速通信的局部总线等,来满足试验和测量用户的要求。PXI兼容CompactPCI机械规范,并增加了主动冷却、环境测试(温度、湿度、振动和冲击试验)等要求。这样,可保证多厂商产品的互操作性和系统的易集成性。


3.3、虚拟仪器的软件系统

虚拟仪器技术最核心的思想,就是利用计算机的硬/软件资源,使本来需要硬件实现的技术软件化(虚拟化),以便最大限度地降低系统成本,增强系统的功能与灵活性。基于软件在VI系统中的重要作用,NI提出了“软件就是仪器(The software is the instrument)”的口号。VPP系统联盟提出了系统框架、驱动程序、VISA、软面板、部件知识库等一系列VPP软件标准,推动了软件标准化的进程。


虚拟仪器的软件框架从低层到顶层,包括三部分:VISA库、仪器驱动程序、应用软件。


VISA(Virtual Instrumentation software Architecture)虚拟仪器软件体系结构,实质就是标准的I/O函数库及其相关规范的总称。一般称这个I/O函数库为VISA库。它驻留于计算机系统之中执行仪器总线的特殊功能,是计算机与仪器之间的软件层连接,以实现对仪器的程控。它对于仪器驱动程序开发者来说是一个个可调用的操作函数集。


仪器驱动程序是完成对某一特定仪器控制与通信的软件程序集。它是应用程序实现仪器控制的桥梁。每个仪器模块都有自己的仪器驱动程序,仪器厂商以源码的形式提供给用户。

应用软件建立在仪器驱动程序之上,直接面对操作用户,通过提供直观友好的测控操作界面、丰富的数据分析与处理功能,来完成自动测试任务。


虚拟仪器应用软件的编写,大致可分为两种方式:

①用通用编程软件进行编写。主要有Microsoft公司的Visual Basic与Visual C++++、Borland公司的Delphi、Sybase公司的PowerBuilder;

②用专业图形化编程软件进行开发。如HP公司的VEE,NI公司的LabVIEW 和Lab windows/CVI等。

应用软件还包括通用数字处理软件。通用数字处理软件包括用于数字信号处理的各种功能函数,如频域分析的功率谱估计、FFT、FHT、逆FFT、逆FHT和细化分析等;时域分析的相关分析、卷积运算、反卷运算、均方根估计、差分积分运算和排序等。以及数字滤波等等。这些功能函数为用户进一步扩展虚拟仪器的功能提供了基础。


4、LabVIEW简介

80年代早期,计算机接口变得越来越精细,界面也越来越友好,NI的工程师们意识到:需要一种强大的软件接口让用户通过他们的计算机获得更简单有效的测试与控制。苹果公司的Macintosh为这种即将诞生的图形化软件语言提供了一个最好的环境:G语言。不久,NI为基于计算机的测量和自动化开发出了一个软件包:LabVIEW。


LabVIEW是基于G语言的革命性的图形化开发语言,用来进行数据采集和控制、数据分析和数据表达。它的目标是简化程序的开发工作,让工程师和科学家能充分利用PC机的功能,快速简便地完成自己的工作。十余年的不断充实,使LabVIEW成为丰富、强大的实用工具软件包。与LabVIEW同步推出的还有LabWindows/CVI,它的特点是可利用ANSI C编程语言建立与实用仪器的交互式开发环境。这两者内部都配有GPIB、VXI、串口和插入式DAQ板的库函数,以及全球几百家厂商的仪器驱动程序。围绕这些核心软件还陆续开发出多种附件。


LabVIEW的诞生标志着NI进入了专门从事VI(虚拟仪器)的时期。


5、PCI、PXI、VXI的比较

基于PCI总线、基于PXI总线、基于VXI总线虚拟仪器测试系统由于总线的不同而具有各自的特点与应用范围。


与传统仪器组建的测试系统相比,基于PCI总线的虚拟仪器测试系统在性能、灵活性、易用性和低价格等方面具有绝对优势。其仪器硬件为插卡式,具有与计算机插卡相同的尺寸,将硬件插卡直接插入计算机中的PCI槽上即可构成测试系统,充分利用计算机的资源来实现数据采集及处理、故障分析诊断和过程控制等智能测控。与基于其它总线的虚拟仪器测试系统相比,价格低廉的特点使其在工业、军工、教育和科研领域得到了广泛得以应用。缺点在于基于PCI总线的虚拟仪器测试系统缺乏触发线标准化及其所处的计算机环境,这一环境不能满足大功率,高质量冷却,仔细考虑RFI/EMI屏蔽的复杂而精密的测试任务的要求。插卡的连线也可能因所用的计算机型号的限制而生产困难。插槽数十分有限,难以容纳大量的通道。


基于PXI总线的虚拟仪器测试系统由于PXI总线产品对PCI总线产品的完全兼容,这样在许多领域,他们与基于PCI总线的虚拟仪器测试系统可以互相代替,而具有性能超过前者,只是价格稍高一些。用户如果想在现有的基于PCI总线的虚拟仪器测试系统转向基于PXI总线的虚拟仪器测试系统,只需对硬件投资,原有的软件可不加任何修改而运行在PXI系统上。同时由于PXI总线对机箱内部器件工作环境做了严格的规定以及PXI系统拥有比台式机设计更多的扩展槽,致使PXI系统可以在恶劣工作环境下正常工作,从而可以适应各种各样更大复杂的测试领域。由于PXI总线是PCI总线基础上借鉴VXI总线的仪器特性组合而成,PXI系统在价格上和性能上介于PCI系统和VXI系统之间。


VXI总线从1987年诞生至今虽然历史不长,但VXI总线产品从无到有、从小到大,已形成规模生产,特别是从90年代开始,VXI总线的产品发展呈指数上升趋势。VXI总线模板本身不带电源,没有面板,按键,旋钮和显示器,电参数的设定及测量结果显示必须通过软件面板来实现,是很好的虚拟仪器系统平台,将VXI总线这项技术与计算机网络技术相结合,利用现有的互联网资源,可实现交互式网页基础上组建远程通信及测试网络。VXI总线的系统结构为虚拟仪器开发提供了更为理想的环境,基于VXI总线虚拟仪器测试系统将会成为二十一世纪程控测试系统的主流。目前由于价格昂贵,它主要应用在尖端测试领域,据数据资料表明,VXI系统用户72%来源于通讯业和军工业。


不同的测试任务对测试系统有不同的要求,一种虚拟仪器测试系统不可能涵盖整个社会对测量的要求。对虚拟仪器测试系统的发展应该有一个客观的认识。基于PCI总线的虚拟仪器测试系统通常适用于低频低速的过程测控系统、教学实验和实验室常规测试。基于PXI总线的虚拟仪器测试系统由于电磁兼容性能及冷却性能的改善和模块式结构可用在一般要求的自动测试系统场合和系统总价格有所限制的自动测试系统。基于VXI虚拟仪器测试系统具有良好的性能,可用于自动措施系统是特别是高速大数据量自动测试系统,宽频带自动测试系统和军用自动化测量,代表着二十一世纪测试技术的发展方向。


6、结束语

PXI兼备了compact PCI标准的高性能和VXI仪器系统的高可靠性,同时 ,保持了比VXI更具吸引力的价格优势,是能满足您高标准测试要求的最佳性价比选择。开放式PXI规范利用了多项现有工业标准技术,以提供最佳的测量和自动化平台。其中最主要的电气规范由非常成功的PCI总线扩展而来。 面向仪器的电气扩展包括内置的触发和局部总线,而这些又是由高性能的VXI仪器结构扩展而来。


关键字:虚拟仪器  软硬件系统  现场总线 引用地址:虚拟仪器的软硬件系统设计在现场总线中的应用

上一篇:基于虚拟仪器技术实现网络虚拟示波器系统的设计
下一篇:虚拟仪器系统的构成和实现软硬件的应用设计

推荐阅读最新更新时间:2024-10-22 10:19

虚拟仪器软硬件系统设计在现场总线中的应用
1、引言 PXI(PCI面向仪器的扩展)是一个新的模块化仪器平台,它能够提供高性能的测量,而价格并不十分昂贵。利用PXI模块化仪器,您可以充分享受开放式工业标准化PC技术所带来的低成本、简便易用性、灵活性及高性能等优点。PXI的核心技术是CompactPCI工业计算机体系结构、Microsoft Windows 软件及VXI的定时和触发功能。 2、电子测量仪器的发展 电子测量仪器发展至今,大体可分为四代:模拟仪器、数字化仪器、智能仪器和虚拟仪器。 第一代模拟仪器,这类仪器在某些实验室仍能看到,如指针式万用表、晶体管电压表等。 第二代数字化仪器,这类仪器目前相当普及,如数字电压表、数字频率计等。这类仪器将模拟信号的测量转
[测试测量]
<font color='red'>虚拟仪器</font>的<font color='red'>软硬件</font><font color='red'>系统</font>设计在<font color='red'>现场总线</font>中的应用
虚拟仪器系统的构成和实现软硬件的应用设计
虚拟仪器是全新概念的仪器,它是对传统仪器概念的重大突破,它的出现开始了仪器发展的全新时代,是仪器领域的一场革命。设计功能强大、高效、集成完美,应用于测试和测控领域的虚拟仪器系统是信息时代的需求。 1 虚拟仪器系统的构成 虚拟仪器由硬件设备与接口、设备驱动软件和虚拟仪器面板组成。其中,硬件设备与接口可以是各种以PC为基础的内置功能插卡、通用接口总线接口卡、串行口、VXI总线仪器接口等设备,或者是其它各种可程控的外置测试设备,设备驱动软件是直接控制各种硬件接口的驱动程序,虚拟仪器通过底层设备驱动软件与真实的仪器系统进行通讯,并以虚拟仪器面板的形式在计算机屏幕上显示与真实仪器面板操作元素相对应的各种控件。用户用鼠标操作虚拟仪器的面板
[测试测量]
虚拟仪器系统软硬件结构
按照系统中各部分之间的依赖关系,可以把一套虚拟仪器系统划分成几个层次,如图 1所示。最笼统的划分方式是把虚拟仪器系统划分为软件部分和硬件部分。 图 1虚拟仪器系统的层次结构 虽然软件是虚拟仪器系统的主体,但硬件仍然是整个系统最基础的部分。硬件主要负责将被测量物理信号转换为二进制的数字信号数据,而软件系统一方面负责控制硬件的工作,一方面又负责对采集到的数据进行分析处理、显示和存储。 设计虚拟仪器的硬件部分时需要考虑多种因素,以下列举其中最主要的几个: l 被测量物理信号的特性。不同的物理信号需要使用不同类型的传感器将其转换为可供电脑分析的数字电信号,而不同的传感器又需要配备不同的信号调理模块。某些早期虚拟仪器系统直接通过G
[测试测量]
<font color='red'>虚拟仪器</font><font color='red'>系统</font>的<font color='red'>软硬件</font>结构
虚拟仪器的概念及其系统软硬件结构
虚拟仪器概念 如果总结哪一项技术在过去50年中,对人类生活的影响最大,那肯定是计算机技术。计算机历经50年的发展,现在已经渗透到了日常生活的方方面面。似乎生活中的任何一件物品,不与计算机相结合,就无法再创新;而一旦与计算机结合在一起,则会立刻迸发出令人瞠目的活力。 传统设备与计算机的结合通常有两个方向,一是以计算机为主体,在计算机上添加某些必要硬件设备,完成传统设备的功能;二是以传统设备为基础,在其上添加计算机软硬件。以电话为例,它的发展方向:一是为计算机配备耳机、麦克风、摄像头等硬件,然后直接通过计算机进行语音、视频通讯;其二,是把外形和功能都缩减后的计算机直接安装到电话上,并在安装上相应的系统和应用软件,成为智能手机。
[测试测量]
<font color='red'>虚拟仪器</font>的概念及其<font color='red'>系统</font><font color='red'>软硬件</font>结构
LonWorks现场总线控制系统软硬件全面解决方案
  什么是PLC和DCS之后最具生命力的控制系统设备?现场总线控制系统,也就是FCS。   FCS系统最感性的特征是:构成自动化系统的各种传感器、执行器及控制器通过现场控制网络联系起来,通过网络上的“对话”完成传统系统需要硬件连接才能传递的信号,也正是通过这种“对话”完成彼此的协调,从而实现自动化控制。FCS系统以其网络化、标准化、开放性和可互操作等诸多技术优势向传统的控制系统装备发起挑战,其带来的不仅是控制装备的技术更新,更是工程设计方法的革命。   在FF,Profibus, Interbus, CAN等诸多现场总线技术中,LonWorks现场总线是唯一一种涵盖Sensor Bus、 Device Bus和Fieldbus三种
[嵌入式]
基于现场总线虚拟仪器的车辆监控系统
1 引言   目前,在控制领域,虚拟仪器系统的应用多局限于采集-反馈-控制的点对点方式。而对于多电机的系统,特别是多电机驱动的蓄电池车辆系统,则需要实现大量的信息采集、分布式的协调控制、实时的反应速度等功能。传统方式硬件组成复杂、走线繁琐、调试安装不便、不易扩展,且没有发挥虚拟仪器的优势,因此本文提出了一种基于CAN(Controller Area Network)总线的虚拟仪器系统的设计方案,将计算机通讯、现场总线技术和虚拟仪器的概念很好的结合起来,设计出了一套结构简单、实时性高、扩展性强的分布式监控系统,在复杂控制系统中实现了多电机控制与监测的实时调节、控制效果的数字化和图形化。 2 总体方案的提出 图1 系统
[嵌入式]
现场总线适配器的软硬件设计和现场应用
    一、概述     随着计算机在工业控制的广泛应用,控制局域网络也深入应用到各行各业之中。现行的诸多控制系统,若采用单机控制方式已越来越难以满足设备控制的要求,因为往往我们所控制的设备只是整个系统的一个基本单元,它既需要外部输入一些必要的信息,同时也需要向外部输出自身的运行参数和状态。所有这些,都要求我们采用控制网络技术,将众多设备有机的连成一体,以保证整个系统安全可靠地运行。     实际生产的巨大需求促进了局部总线的发展,同时也带来了“百花齐放,百家争鸣”的盛况。从国外到国内的现场通讯网络较为流行的有:RS-232;RS-422/485;HART;ProfieldBus;Dupline;CAN;Lonworks;FF
[嵌入式]
基于RK3588的8K无线投屏系统软硬件设计
无线投屏就是通过无线传输的方式将移动设备(如手机、平板、笔记本、电脑)的画面“实时地”投射到支持此功能的外设大屏幕上,实现多屏共享。它具有连线少、简单易操作、实时传输、稳定性和多人协作等特点。 目前主流无线投屏系统只支持4 路投屏,且4 路长时间投屏时容易出现卡顿、花屏等现象,严重影响了会议体验。本文设计的一款8K 无线投屏系统,支持8 路跨协议同时投屏,性能稳定,投屏效果更好,且支持单路8K@60FPS 投屏,给会议带来极致体验。 1 硬件设计 无线投屏系统主控采用瑞芯微RK3588,WiFi 采用瑞昱RTL88222CU。系统HDMI2.1 接口,无线投屏系统通过HDMI 将移动设备(如手机、平板、笔记本、电脑)的画面
[嵌入式]
基于RK3588的8K无线投屏<font color='red'>系统</font><font color='red'>软硬件</font>设计
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved