SiC MOSFET驱动电压测试结果离谱的六大原因

发布者:EE小广播最新更新时间:2022-05-25 来源: EEWORLD作者: 泰克科技关键字:SiC  MOSFET  驱动电压  测试  泰克科技 手机看文章 扫描二维码
随时随地手机看文章

开关特性是功率半导体开关器件最重要的特性之一,由器件在开关过程中的驱动电压、端电压、端电流表示。一般在进行器件评估时可以采用双脉冲测试,而在电路设计时直接测量在运行中的变换器上的器件波形,为了得到正确的结论,获得精准的开关过程波形至关重要。


SiC MOSFET 相较于 Si MOS 和 IGBT 能够显著提高变换器的效率和功率密度,同时还能够降低系统成本,受到广大电源工程师的青睐,越来越多的功率变换器采用基于 SiC MOSFET 的方案。SiC MOSFET 与 Si 开关器件的一个重要区别是它们的栅极耐压能力不同,Si 开关器件栅极耐压能力一般都能够达到 ±30V,而 SiC MOSFET 栅 极 正 压 耐 压 能 力 一 般 在 +20V 至+25V,负压耐压能力一般仅有 -3V 至 -10V。同时,SiC MOSFET 开关速度快,开关过程中栅极电压更容易发生震荡,如果震荡超过其栅极耐压能力,则有可能导致器件栅极可靠性退化或直接损坏。


很多电源工程师刚刚接触 SiC MOSFET 不久,往往会在驱动电压测量上遇到问题,即测得的驱动电压震荡幅值较大、存在与理论不相符的尖峰,导致搞不清楚是器件的问题还是电路设计的问题,进而耽误开发进度。


接下来我们将向您介绍 6 种由于测试问题而导致的驱动电压离谱的原因。


原因 1:高压差分探头衰减倍数过大


高压差分探头的为差分输入且输入阻抗高,在电源开发过程中一般都会选择它来测量驱动波形。有时在使用高压差分探头时获得的驱动波形显得非常粗,这往往是由于高压差分探头的衰减倍数过大导致的。衰减倍数大,高压差分探头的量程就大,使得分辨率大幅下降,同时示波器在还原信号时还会将噪声放大。此时就需要选择衰减倍数较小的高压差分探头或选择高压差分探头衰减比较小的档位。我们使用图 1 中的高压差分探头测量驱动电压,衰减倍数分别选择 50 倍和 500 倍,在下图中可以明显到 500倍衰减倍数下驱动波形非常粗。

 

image.png

图 1. 示意图为泰克高压差分探头

 image.png

图 2. 50 倍与 500 倍衰减波形对比


原因 2:高压差分探头测量线未双绞


高压差分探头一般用于测量高压信号,为了使用安全及方便接线,其前端是两根接近 20cm的测量线。在进行测量时,可以将两根测量线看作为一个天线,会接收外界的磁场信号。而SiC MOSFET 的开关速度快,开关过程电流变化速率大,其产生的磁场穿过由高压差分探头测量线形成的天线时就会影响测量结果。为了降低这一影响,可以将高压差分探头的两根测量线进行双绞,尽量减小它们围成的面积。从图 4 中可以看到,在将测量线未双绞进行双绞后,驱动电压波形的震荡幅度明显降低了。

 

image.png

图 3. 差分探头是否双绞

 image.png

图 4. 是否双绞的波形对比


原因 3:无源探头未进行阻抗匹配


无源探头衰减倍数小、带宽高,往往可以在双脉冲测试时用来获得更为精准的驱动电压波形。无源探头的等效电路如下所示,只有当其与示波器达到阻抗匹配时才能获得正确的波形。一般情况下,我们可以通过旋转无源探头尾部的旋钮调节电容来进行阻抗匹配调节,此外还有部分探头能够在示波器上完成自动补偿。

 

当驱动电压为 -4V/+15V 时,通过图 8 可以看到,是否正确补偿对测量结果有非常大的影响。当探头未进行阻抗匹配时,驱动波形振荡幅度明显变大,测量量值也更大,这将会导致对驱动电压的误判。当探头正确阻抗匹配时,驱动电压振幅更小,测量值与实际外加电压一致。

 

image.png

图 6. 泰克无源探头

 image.png

图 7. 无源探头等效示意图

 image.png

图 8. 阻抗匹配与未阻抗匹配波形对比


原因 4:无源探头未使用最小环路测量


无源探头标配的接地线有接近 10cm 长,采用这样的接地线时,会出现同高压差分探头一样,即测量线围出一个很大的面积,成为一个天线,测量结果会受到 SiC MOSFET 开关过程中高速变化的电流的影响。同时,过长的接地线可以看做一个电感,也会导致震荡的产生。


为了降低这一影响,可以使用厂商标配的弹簧接地针,其长度短、围出的面积更小。从图 10 中可以看到,使用标配接地线时,驱动波形震荡严重,其峰值最大达到 xxV,超过了 SiC MOSFET栅极耐压能力;当使用弹簧接地针后,波形震荡大大减轻了,幅值均在 SiC MOSFET 栅极耐压能力范围内。

 

image.png

图 9. 示波器自带长接地线、短弹簧地线

 image.png

图 10. 长接地线与短弹簧地线波形对比


原因 5:探头高频共模抑制比不够


对于桥式电路中的上管 SiC MOSFET,其 S 极为桥臂中点,其电压在电路工作时是跳变的。其跳变的幅度为电路的母线电压,对于 1200V SiC MOSFET 而言,母线电压为 800V;其跳变的速度为 SiC MOSFET 的开关速度,可达到 100V/ns。此时要测量上管的驱动电压,就需要面对这样高幅值、高速度跳变的共模电压

 

image.png

图 11. 泰克光隔离探头 ISOVu


从图 12 中可以看到,当采用常见的高压差分探头时,驱动波形振荡更大,在第一个脉冲内 Ton时间测量值偏低,在 Toff 时间内存在偏置,在第二个脉冲上升沿存在严重的震荡。这主要是由于高压差分探头在高频下的共模抑制比不够导致的,此时我们就需要使用具有更高共模抑制比的光隔离探头来测量上管驱动电压波形。


从图 12 中可以看到,当采用光隔离探头后,波形震荡明显减小,第二脉冲上升沿的严重震荡消失,在关断时间内电压测量值与实际外加电压接近。

 

image.png

图 12. 光隔离探头与高压差分探头波形对比


原因 6:测量点离器件引脚根部过远


当我们测量驱动电压波形时,探头并不能直接接 触 到 SiC MOSFET 芯 片, 而 只 是 能 接 到 器件的引脚上。可以将器件的引脚看作为电感,那么我们实际测得的驱动电压为真实的栅 - 源极电压和测量点之间引脚电感上压降之和。那么,测量点之间引脚长度越长,测量结果与 SiC MOSFET芯片上真实的栅-源极电压差异越大。

 

image.png

图 13. 4pin 的图片和等效示意图


为了降低这一影响,需要将探头接到器件引脚的根部,最大限度得缩短测量点之间引脚的长度。从图 14 中可以看到,当测量点位于引脚根部时,开通驱动波形振荡幅值及振荡频率明显减少,关断驱动波形振荡幅值也明显减少。

 

image.png

图 14. 探头接引脚根部与远离根部

 image.png

图 15. 引脚根部与远离根部波形对比




关键字:SiC  MOSFET  驱动电压  测试  泰克科技 引用地址:SiC MOSFET驱动电压测试结果离谱的六大原因

上一篇:示波器操作界面之运行控制区
下一篇:示波器操作界面之触发系统设置区

推荐阅读最新更新时间:2024-11-06 10:29

GSM基站时钟频率调整和测试浅谈
在GSM 05.10条款的 无线子系统同步 中规定: 基站应该使用绝对精度优于0.05ppm(5 10-8)的单一频率源作为时间基准以及RF的产生源,该频率也用于基站的全部载波源 。   一、GSM基站时钟频率对通信的影响  基站系统时钟信号本身是由一个高精度的石英振荡器产生,通常该信号同步于中枢系统的主时钟,在主时钟同步失败时,基站本身系统的时钟也要求必须能够维持网络的同步。 然而即使是最稳定的石英振荡器,经过一定的时间或由于其它环境因素(如温度、湿度等)的影响也会出现老化、衰减现象,直至超出GSM的基准频率精度指标要求(5 10-8)。 这里我们举个例子,如NOKIA基站时钟板的基准频率为13MHz,按照标准NOKIA基站时钟板
[测试测量]
模块化碳化硅SiC)器件评估的深入分析
碳化硅(SiC)的高性能能力正在改变功率电子领域的格局,带来了诸如卓越的效率、增加的功率密度和提升的热性能等好处。值得注意的是,汽车应用正从SiC技术中受益良多,主要用于主驱动、车载充电器和电池充电站。 我们从之前的文章中了解到,SiC的介电强度是硅的十倍,使其能够创建满足充电基础设施和智能电网需求的高压器件。此外,SiC的高开关频率使得可以减小磁铁和电感器等组件的物理尺寸。 然而,这只是冰山一角。SiC功率器件正在各种应用中留下自己的印记,从电源和用于电池充电和牵引驱动的电动汽车电源转换到工业电机驱动和可再生能源发电系统,如太阳能和风能逆变器。 充分利用SiC需要改变设计方法,通常会导致对印刷电路板(PCB)的重大更
[嵌入式]
模块化<font color='red'>碳化硅</font>(<font color='red'>SiC</font>)器件评估的深入分析
美高森美展出新型30 kW三相Vienna PFC参考设计和SiC解决方案
将于6月5日至7日在PCIM欧洲电力电子展的6号展厅318展台,展示适用于快速电动车充电和工业应用的解决方案。 致力于在功耗、安全、可靠性和性能方面提供差异化的领先半导体技术方案供应商美高森美公司(Microsemi Corporation,纽约纳斯达克交易所代号:MSCC) 宣布提供采用碳化硅(SiC) 二极管和MOSFET器件的全新可扩展30 kW三相Vienna功率因数校正(PFC)拓扑参考设计。这款可扩展的用户友好解决方案由美高森美与北卡罗莱纳州立大学(NCSU)合作开发,非常适合快速电动车(EV)充电和其它大功率汽车和工业应用;此外,它亦可通过美高森美功能强大的SiC MOSFET和二极管,为客户提供更高效的开关以及
[电源管理]
数字无线系统的测试和测量范例
随着业界向2.5G和3G系统的升级,今天功率放大器设计人员面监新的设计挑战。建议采用的混合系统使服务供应商可以在支持现有基础设施的情况下平滑地过渡到3G系统。这种结合多载波和多系统可用来降低系统成本、适应数据服务的要求并扩展市场覆盖面。 下一代无线电 软件定义的无线电(SDR)是能够推动这变化的技术。在多载波和多调制方案情况下,放大器设计人员在测试性能时遇到了更多难题。这同时也要求在测试和测量中采用新的架构。 要在3G系统中实现软件定义的无线电方案,设计者必须先在测试实验室内对放大器性能进行先在测试实验室内对放大器性能进行彻底的测试。为有效地实现这一点,必须采用最新的模块化测试和测量配置。本文讨论的模块化解决方案充分利
[应用]
lcr测试仪使用方法图解_lcr测试仪使用指导书
  lcr测试仪使用方法图解   1、准备好LCR测试仪,白色按钮是开关   2、一般常用的按钮是ZLCR可以变换主测功能,然后就是DQe可以变换辅助测量功能   3、将外设连接头准备好   4、按图上的方式连接好电脑和lcr   5、这是测试仪屏幕上会显示测量数据   6、开始测量就可以了   LCR测试仪如何才能校正误差   为了减少测量误差,LCR测试仪具有若干校正功能。校正值根据频率和阻抗的量程不同会有所不同,所以进行全范围的校正要花费很多时间。   这里,对零点校正和负荷校正进行解说。   零点校正:当LCR测试仪的零点漂移对于测量值不能忽略时,就需要进行零点校正。因为零点漂移
[测试测量]
lcr<font color='red'>测试</font>仪使用方法图解_lcr<font color='red'>测试</font>仪使用指导书
基于CMX860的来电显示电话测试仪的设计
1 引 言      目前,随着电信部门电话主叫识别(来电显示)业务的普遍开通,具有主叫识别功能的电话机越来越普及。根据这个情况,我们设计了一台可以测试主叫识别功能的多功能电话测试仪,采用了CML(ConsumerMicrocircuit Limited)公司的CMX860作为其中来电显示测试电路的核心元件,单片机采用了SST89C58。 1.1 CMX860简介      CMX860是一块通用的低功耗电话机信令收发集成电路。CMX860包含DTMF编码解码器、V.23调制解调器,具有铃流检测、话机摘机检测等功能,它可以广泛应用于由线路提供电源的电话设备。      CMX860的主要特性有:(1)提供V.23 1200
[单片机]
基于CMX860的来电显示电话<font color='red'>测试</font>仪的设计
快充仅是第三代半导体应用“磨刀石”
快充仅是第三代半导体应用“磨刀石”,落地这一领域可每年省电40亿度 众所周知,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体,相较传统的硅材料半导体,具备许多非常优异的特性,如高击穿电场、高热导率、高电子饱和速率以及抗强辐射能力等。前一个十年,第三代半导体材料已经在基站射频、功放等通信领域崭露头角;2021年,随着“十四五”规划的提出,中国将加速推动以SiC、GaN为代表的第三代半导体新材料新技术产业化进程,受益于功率转换的极大应用潜力,第三代半导体开始进入新一轮的增长周期。 市场调研机构Omdia在《2020年SiC和GaN功率半导体报告》指出,全球SiC和GaN功率半导体的销售收入,预计从2018年的5.71
[电源管理]
快充仅是第三代半导体应用“磨刀石”
基于测试管理环境TestStand的测试系统的应用设计
引 言 随着计算机技术、大规模集成电路技术和通讯技术的飞速发展,测试仪器技术领域发生了巨大的变化,虚拟测试仪器平台也进入了新的发展阶段。美国国家仪器公司(National Instruments)推出了测试管理环境TestStand。基于TestStand的虚拟测试平台具有以下优点: 1)开放性:利用通用硬件平台构建虚拟仪器系统具有开放性,便于系统的升级和更新。 2)易用性:丰富的软件资源和良好的人机交互图文界面使得虚拟仪器系统非常易于使用。 3)性能价格比高:相同的性能条件下开发费用和维护升级价格相对比较便宜。 本文介绍了一种基于测试管理环境TestStand的测试系统组建过程和应用。实践证明,该系统开发流程简单、模块化程度
[测试测量]
基于<font color='red'>测试</font>管理环境TestStand的<font color='red'>测试</font>系统的应用设计
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved