万用表以功能多,简单易用已成为电子电气工程师手中必不可少的工具,但如果想要充分发挥其作用,快速准确地得到准确的数据。那我们还需要更深入了解万用表的一些特质:
1. 数字万用表一定比模拟万用表好?
解:数字万用表以其精准度和灵敏度高、测量速度快、功能多、体积小、输入阻抗高、便于观察和强有力的通讯功能等优秀品质,迅速得以应用。有取代模拟指针表的趋势。
但在某些场合,比如电磁干扰非常强的场合用数字万用表测试的数据可能会偏差很大,因为数字万用表输入阻抗很高,极易受感应电势的影响。
2. 在维修中,通过排查法怀疑可能是电路中的二极管或三极管损坏。但用数字表二极管档测其导通电压约0.6V,反向无穷。没有问题,再检查电路也无故障发现,为何?
解:大多数数字表二极管档发出的测试电压约为3~4.5V,假如测试的晶体管有轻微的漏电或特性曲线已经变坏,在这样的低电压下是无法显现的。这时候就要用模拟表×10K电阻档,该档发出的测试电压为10V或15V,在该测试电压下就会发现被怀疑的晶体管在反向是有漏电。同理在测某些耐压非常低的精密敏感元件电阻时,使用模拟表极易损坏敏感元件。这时候就要使用数字表来测。
3. 用某万用表测量高压探棒衰减后的电压值,结果发现DCV测试较准确,但ACV误差很大。即使使用精准度很高的万用表亦是如此,是何原因?
解:绝大数的万用表都采用并联方式测电压,对整个测试电路而言电压表本身就等效为一负载就是输入阻抗。这个负载阻抗越大对被测回路影响就越小,测试也就越准确。但任何事情都不能十全十美,阻抗高就要牺牲测试的频宽。目前市面上频响在100KHz左右的万用表输入阻抗为1.1M左右,所以在测试高阻负载2端的电压时就会影响很大,比如高压探棒本身阻值就很高。这时候您就要选用高内阻的万用表了,比如ESCORT(富贵)170/172/176/178/179手持式数字万用表测试ACV时提供高达10000Ω的输入阻抗,这样就能避免该问题。
4. 我在实际测试中,既要测电压电流、电机绕组的阻抗等,还想测转速,有没有万用表可以实现该功能?
解:ESCORT(富贵)-172手持式数字万用表可以满足您的上述要求,同时它的安规满足国际电子电工委员会IEC1010-1 CATII 1000V,CATIII 600V标准,所以您即使在三类环境下您也可以放心使用,不必担心安全问题。
5. 有没有非常便宜且性能又可靠稳定的数字万用表?
解:天底下有这么好的事麻烦你也告诉我一声:)。但相对而言台湾ESCORT(富贵)生产的数字万用表性价比较高。
6. 什么是溯源?
解:溯源就是通过一条具有规定不确定度的连续比较链,使测量结果或测量标准值能够与规定的参考标准,通常是与国家测量标准或国际测量标准联系起来的特性。即工作计量器具-----》计量标准器具-----》计量基准器具。举个例子,大家生活接触最多的质量单位:千克,其标准就是以存放在位于巴黎塞夫尔一个城堡中的三层锁保险箱中的1千克铂铱合金圆柱形砝码质量为基准,世界上所有的质量单位都是以此为基准。同样DCV 1V/10V是以存放在巴黎国际计量局中约瑟夫森量子电压阵列为基准的。
关键字:万用表 工具 电子电气工程师
引用地址:
万用表的特殊功能与应用
推荐阅读最新更新时间:2024-11-13 08:01
数字万用表自动计量系统的使用方法介绍
系统简介 数字万用表是一种多用途的电子测量仪器被广泛运用于电磁学测量领域。大量的仪器测量需求使得万用表使用频率越来越高,仪器的计量检定工作量也大大增加。由于万用表测量领域广泛,需要计量的项目众多,涉及计量规程繁琐,计量效率较低,传统手动计量人为干扰因素较大,计量结果可靠性较低。 NSAT-3030数字万用表自动计量系统自动封装国家计量检定标准,计量项目齐全、操作流程清晰、计量结果精确,相较于传统手动计量方法有着明显优势,能针对性的解决人工手动计量所遇到的多种难题,提高计量功效50-100倍。 产品特点 系统严格参照国家计量标准而开发,计量流程可根据客户需求定制化设定,全面满足客户计量需求,自动封装计量
[测试测量]
数字万用表使用知识
1、蜂鸣器功能是做什么用的? 答:蜂鸣器功能,是万用表的附加功能,一般做在2K 档,一般是当测量阻值为50 以下的线路(或电阻)时,内置蜂鸣器发声。这个功能在实际中,作用很大,可以提高测量线路通断的工作效率,是电子检修的必备功能。 2、为什么 数字万用表 在200 档短接不回零呢? 答:在200 档,由于线路、仪表内阻及接触点存在阻值,所以短接时,有一些尾数是正常的,这个尾数在使用中会越来越大,不可调整,但是可以通过擦洗线路板、紧密接触点来减少数值。可以在使用中,先短接,并记下数值,在测量中减去就可以了。 3、如何确定万用表是好的? 答:这是一个比较大的问题,将每个功能量程都试一下是一个比较好的
[测试测量]
恩智浦推出全球最小、集成微控制器的单芯片SoC,适合无人机、机器人、电动工具、直流风扇及健康保健应用
为满足广阔的市场需求,恩智浦一直致力于扩展自己的8位微控制器系列产品,打造片上系统(SoC)便属于这个战略的一部分;该款SoC包含前置驱动器,可提供超高电压性能,低(BOM)成本和高集成度
美国德克萨斯州奥斯汀,2017年3月9日 -- 恩智浦半导体 Semiconductors N.V.(纳斯达克代码:NXPI)今天宣布推出全球最小的单芯片SoC解决方案——MC9S08SUx微控制器()系列,该超高压解决方案集成了18V至5V 低压差()和MOSFET前置驱动器,适合无人机、机器人、电动工具、直流风扇、健康保健以及其他低端无刷直流电机控制 ()应用。这一强大的的8位MC9S08SUx微控制器系列进一步拓展了恩智浦的S0
[机器人]
如何用万用表检测热敏电阻的好坏?
任何电子元器件在使用过程中或者是使用之前都需要进行测量。热敏电阻也不例外,但是对于这样的电子元器件来说,该怎么测量呢?接下来就来介绍一下怎么测量热敏电阻吧。 热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器和负温度系数热敏电阻器。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件。 对于热敏电阻的测量为的是能够测量其阻值以及精度。 检测时,用万用表欧姆档,具体可分两步操作:首先常温检测,用鳄鱼夹代替表笔分别夹住PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在
[测试测量]
可借助日常物品来打造新工具的机器人
得益于技术和相关算法的进展,机器人正变得越来越聪明。佐治亚理工学院的一支研究团队,刚刚开发出了一款能够被教会“如何通过日常物品来打造新”的机器人,它就是MacGyver 。当然,前提是这些资源丰富的机器人被教会模式识别和功能匹配,然后才可以学会如何解决特定的问题。 尽管与波士顿动力公司的后空翻机器人技术相去甚远,但MacGyver还是能够得出一些令人相当印象深刻的结果。近年来,佐治亚理工学院的研究团队,已经教会了它们如何根据形状对物体进行分类、了解用于拾取不同物品的力度、找到处理此前从未见过的物体的方法、甚至相互传授这方面的工作经验。
这个始于2012年的项目,旨在创造出一台能够深入灾区的机器人,评估情况并充分利用周
[机器人]
你烧毁过万用表吗?这些使用万用表的错误用法你可能都犯过
指针万用表使用注意事项 ①使用万用表要养成一个好习惯,就是每次测量前再看一眼挡位放置是否正确。养成了这样的习惯,烧表的机率将大大降低。 ②选用量程应尽量使指针指示在满刻度的三分之二附近,读数比较准确。如果不知道被测电压、电流的大小,应选择大量程挡,然后根据读数大小,重新调整量程,使读数准确。 ③测量电阻时,改变量程挡后都要重新调零,读数才能准确。如果调不到零位时,说明表内电池电压已不足,应更换电池了。 ④在线测量电阻时,应切断电源进行操作,还要注意有无其他元件与被测电阻形成并联电路,必要时可将电阻从电路中焊开一端,再测量。对有电解电容器的电路,要将电容器放完电后再测量。 ⑤使用万用表时要养成手不要触碰表笔金属部分的习惯,以防电
[测试测量]
数字万用表使用方法介绍,数字万用表如何测测电压/电流
数字万用表,顾名思义,其工作原理主要以数字电路为基础来检测和分析信号,然后通过模数转换器提供LCD显示出来。 数字万用表虽然是较复杂的电子测量工具,但正确地按说明书去操作、留意常规的注意事项,保持良好的使用环境,那么仪表的使用寿命和准确度会大大提高及稳定。数字万用表采用液晶显示器作为读数装置,具有测量精度高、使用安全可靠的特点。它的型号品种较多,测量非常简便。 数字万用表主要有:直流电压、直流电流、交流电压、交流电流、电阻、电路通断测试、二极管测试等常用测量功能;随着电子科技的发展,万用表又具备了很多应用功能:数据存储、数据传输、示波等:而其中有部分向专业应用领域发展:电力测试的功率计、泄漏电流测试仪、绝
[测试测量]
如何快速有效的定位短路元件?
相信电路板修得多的朋友,一定碰到过公共电源短路的情形。大多数情况是,当你用万用表测试电路板的某个电源电压对地之间的电阻值,显示非常之小,几十欧姆,几欧姆,零点几欧姆,甚至显示0欧姆,这可能比正常的电阻值小很多,而使用这一路电源的器件有不少,哪一个都有短路的可能,怎样快速有效的定位短路元件呢? 首先,要判断是否真正短路。经验不够的朋友往往在电路板某个电源电压点是否短路上纠结,因为不同电路板电源两端电阻值范围并不确定,某些板子有可能几百欧姆就短路了,而某些几个欧姆也正常,这就需要我们平常对一些电路板电源端对地电阻进行一些大致测试来建立一些感性认识了。一般来说,大部分没有大功率CPU芯片的电路板,电源端电阻值在几百欧姆以上,芯片越多
[测试测量]