基于LabVIEW开发环境实现SOE事件顺序记录系统的设计

发布者:SereneMeadow最新更新时间:2023-05-25 来源: elecfans关键字:LabVIEW  开发环境 手机看文章 扫描二维码
随时随地手机看文章

1 引言

在电力系统中,SoE(Sequence of Event)事件顺序记录系统是调度人员正确处理事故、分析和判断复杂电网故障的重要工具。其主要功能是将现场关联设备的状态变化按照发生的先后顺序及时捕捉并加上时间标签后传送到调度主站,作为辨别电网故障的主要依据。目前的SoE系统大都是毫秒级的分辨率,当某一事件发生后,可能在同一时间间隔内出现的信息较多,不能分出先后顺序,且监测端子一般较少,只覆盖机组运行中最重要的开关量,随着电网结构的日益复杂,供电企业对电网监控水平、事故分析判断水平要求越来越高,因此要求SoE系统具有更多的监测端子和更高的分辨事件能力。


2 SoE系统概述

为了能更精确地获取事件信息,为事故分析提供有力的证据,同时参照供电企业实际要求,所设计的SoE系统需同时监测500路开关量信号,并达到0.1 ms的分辨率。在设计中,多通道信号的同步采集和附加了时间标记的开关量数据的排序问题成为系统开发的瓶颈。在传统的SoE系统中,受所用硬件系统的限制,在采集通道数目较多时,往往采用多组模块经I/O扩展来达到通道数目的要求,而多组模块之间采集信号时的同步要求会大幅增加软硬件设计的难度,同时对巨型开关量数据的排序会大量占用系统资源,降低系统的实时性。


综合以上问题,同时较大限度地降低系统的成本,拟采取如下设计方案:选择单片机小系统作为下位机进行数据采集;通过USB口或串口通讯将数据传送到计算机;在LabVIEW平台下,对数据进行分析与处理,并对相关数据进行存储、显示和打印,实现一种在LabVIEW环境下的单片机数据采集系统。


3 SoE系统的硬件构成

在信号输入部分,输入模块接收来自外部设备的开关信号,经输入模块对输入信号进行整形处理,进入光电隔离电路,形成CPU所能识别的脉冲信号。


服务节点主要负责开关量信号的采集与传送,其构成框图如图1所示。

基于LabVIEW开发环境实现SOE事件顺序记录系统的设计

3.1 信号采集部分

(1)CPU的选取与时钟同步

在单片机构成的下位机系统中,考虑到开关量信号地理位置分布比较集中,数据采集采用1块时钟频率为100 MHz的混合信号ISP FLASH微控制器C8051F130通过I/O扩展实现500路信号的采集。由于在SoE系统中关注的是一系列记录的先后动作顺序,所以各分散节点必须使用严格同步的时钟,否则各通道数据采集之间的时间延迟可能造成系统的紊乱,造成错误的输出报表。该系统中时间同步信息由时间信息和同步脉冲2部分组成。时间信息指时钟芯片DS12CR887提供的年月日及时分秒的时间信号,同步脉冲指由CPU通过定时器产生的每隔0.1 ms产生的时钟脉冲,通过对时钟脉冲计数确定秒数量级以下的时间。在系统上电时,CPU初始化时钟芯片、定时器及计数器,每0.1 ms产生的同步脉冲作为采集数据的触发信号,达到数据采集的精确同步。


(2)I/O扩展

I/O扩展方面,采用多片扩展能力较强的芯片8255,实现对500路开关量信号的采集,8255由芯片IDT74LVC4245A驱动,同时该芯片可实现3.3 V与5 V信号之间的转换,实现CPU与扩展芯片8255的连接,其选通由CPU通过译码器实现。


3.2 信号传送部分

为了降低数据通讯对系统资源的占用,提高系统监测的实时性,采用另一CPU负责与上位机进行数据通讯,通信CPU通过串口或USB口与上位机进行连接。通讯过程如下:当系统监测到1次事件触发后,通讯CPU从双口RAM中读出数据,将数据通过串口或USB口发给上位机。


4 SoE系统的软件结构

根据SoE系统的硬件构成,其软件结构也分为下位机部分与上位机部分。


4.1 下位机

下位机程序采用汇编语言编写,其主要完成定时数据采集及数据发送工作。其中定时采样的中断频率由定时器0的常数自动装载16位计数器方式产生;波特率由定时器1的方式1产生;自定义软件握手,握手信号可以随意选择一常数,如果单片机接收到的数据等于此常数,则表示握手成功,否则重新接收握手数据。


在系统上电复位后,根据各开关量的正常状态将原始数据存入存储器,同时在同步脉冲下将采集到的数据与初始状态做比较,如果数据保持不变,说明各开关量的状态没有改变,系统重新采集数据;当接收到一个事件触发数据时,就会按照该触发事件时间标记将采集到的数据传送到缓存器中,同时开始计时,如果在定义的时间内没有其他事件到达,则完成1次SoE记录,并将数据从缓存器中发送到双口RAM中,再由通信CPU将数据从双口RAM中调出,经汇总整理后,经网络提交给上位机。其流程图可简单描述如图2所示:

4.2 上位机

上位机的程序主要负责工作状态的设置及数据处理与输出,利用LabVIEW进行数据分析和人机交互界面的编制。采集数据经通讯CPU发往上位机后,经数据处理程序输出结果,结果以事件发生的先后顺序排序,报告相应开关量的状态变化情况,同时将相关数据存入SQL数据库,实现带有时间标签数据的永久保存,作为优化设计和分析故障的重要依据。由于在机组的日常运行中一些运行设备的切换是很正常的,例如磨和风机的切换,如果这些跳变也触发产生SoE报表并打印,将造成系统资源的较大浪费。在实际应用中应以汽机跳闸等少数信号作为触发信号产生SoE报表,并设置当这些量中的任何一个跳变后,向前追忆及向后追加记录的个数,从而完整地反映出整个突发事故的全貌。


5 结 语

基于单片机和LabVIEW的SoE系统,实现了低成本的数据采集系统架构,在实际开发中,LabVIEW表现出很强的灵活性。LabVIEW环境下的单片机数据采集系统将单片机用于数据采集的灵活性与LabVIEW强大的数据分析处理能力相结合,可广泛用于测控领域。


关键字:LabVIEW  开发环境 引用地址:基于LabVIEW开发环境实现SOE事件顺序记录系统的设计

上一篇:基于LABVIEW/CVI开发软件实现光强自动采集系统的设计
下一篇:采用LabVIEW的图形化程序语言实现数字仪表测试系统的设计

推荐阅读最新更新时间:2024-11-01 13:17

基于LABVIEW的多路高速数据采集系统的设计
  引言   在日常的测试测量中,经常使用数据采集卡采集数据。但是很多数据采集卡往往通过PCI总线完成数据的传输,它有诸多弊端,例如操作不便,受限于计算机插槽数量和中断资源,现场信号对计算机安全有威胁,计算机内部的强电磁干扰对被测信号也会造成很大的影响,最耗时最复杂的数据分析却由用户通过第三方软件(如VC,VB等) 在PC机上编写上位机软件来完成,因此用户不得不在这方面花费大量精力。这些问题都遏制了基于PCI总线的数据采集系统的进一步开发和应用,因此迫切需要设计一种更为简便通用的高速数据采集通信系统来完成数据采集以及与计算机的数据交互。   近年来通用串行总线(USB)以即插即用等技术优势得到了广泛的应用,INTEL等公司最近
[工业控制]
基于LabVIEW的多传感器信息采集平台
引 言 车辆定位导航技术是智能交通系统( ITS)中一个重要技术,而定位精度、定位数据的连续性和可靠性是导航系统性能的三个重要因素。 车辆定位导航的精度直接取决于各个传感器的精度,而传感器精度的提高往往受技术、价格等因素的影响。 目前广泛采用的基于多传感器融合的组合导航系统,能够有效提高导航定位精度,增强导航系统的可靠性,进而充分保证导航数据的连续性和可用性。 传感器数量在系统中的需求增加,传统仪器不再适应系统要求。本文作者利用NI公司的虚拟仪器编程软件LabVIEW所设计的多传感器信息采集平台,为组合导航中的多传感器信息采集工作提供了一个通用的平台,克服了传统仪器功能单一,灵活性差,更新和维护费用高的缺点。 并
[测试测量]
基于<font color='red'>LabVIEW</font>的多传感器信息采集平台
如何使用LabVIEW和DLL传递和接受指针
虽然我们都知道要使用 Call Library Function Node去载入DLL,但一遇到指针(Pointer)还真不知道该怎么设定? 指针 (Pointer)是在C语言中很重要的一种资料型态,并且是被广泛的被使用,所以当要用LabVIEW去呼叫C/C++所开发的DLL时,一定会遇到指针的问题,接着我会以传递及接收指标这两个方向来说明。 一、传递指针到 DLL ①传递整数 (Integer)指标 如果以下是我们呼叫的函式 void ReturningValues​​ByReference_Integer(int x, int y, int *sum); 我们要将资料传递到 *sum中,所以请在Data ty
[测试测量]
使用LabVIEW进行心电信号处理
  目录   1.心电信号预处理   2.对心电信号进行特征提取   3.总结   4.更多相关资源   心电图是一种记录心脏产生的生物电流的技术。临床医生可以利用心电图对患者的心脏状况进行评估,并做出进一步诊断。ECG记录是通过对若干电极(导联)感知到的生物电流进行采样获得的。图1中显示了典型的单周期心电图波形。 图1 典型的单周期心电图波形   通常说来,记录的心电信号会被噪声和人为引入的伪影所污染,这些噪声和伪影在我们感兴趣的频段内,并且与心电信号本身有着相似的特性。为了从带有噪声的心电信号中提取出有用的信息,我们需要对原始的心电信号进行处理。   从功能上来说,心电信号的处理可以大致分为两个
[测试测量]
使用<font color='red'>LabVIEW</font>进行心电信号处理
LabView7.1点滴(5)--建立全局变量
上一篇中讲了一下如何建立局部变量,这篇来讲一下如何建立全局变量.大家一定要知道全局变量和局部变量的区别,如果你不能明白这个概念,那恐怕你就不会编写一个完美的稍大一点的程序.在对周围的从事软件开发时间两三年的大学生中,都经常会发现这种概念不清的情况. 当我们理解了全局变量实际上是一种在每个程序文件中都能够看到的变量的时候,我们对全局变量的建立也就不难理解了.在我阅读的书中介绍了两种建立全局变量的方法. 方法1: 在一个vi的后面板中,选择Window-- Show Functions Pallette-- All functions-- Structures-- GLOBAL.然后将其拖到后面板中,形成了个带有
[测试测量]
NASA在微快门自动化测试中采用NI LabVIEW缩短开发时间降低成本
The Challenge: 开发灵活的测试应用,驱动数万微型快门元件(微快门)进行百万次循环,同时记录数据,采集高像素图像,监测、控制测试环境。 The Solution: 采用NI基于Labview的应用,使用户可配置、运行自定义快门驱动测试,同时监测、控制测试环境。 "我们通过LabVIEW快速完成了模块化测试软件,留下更多时间进行早期开发问题的探测及诊断,大量节省总体成本。" 图1.微快门测试图形用户界面 微快门阵列在詹姆斯·韦伯空间望远镜中的应用 随着哈勃太空望远镜进入应用衰退期,人类对太空探索的兴趣却不断增长。詹姆斯·韦伯太空望远镜(JWST)是下一个了解宇宙奥秘,研究大爆炸理论的有力工具。远大
[测试测量]
NASA在微快门自动化测试中采用NI <font color='red'>LabVIEW</font>缩短开发时间降低成本
将无线数据采集方法应用于桥梁坍塌测试
   挑战 :通过起重机升降臂吊装道路填料会使到断裂临界点的桥梁坍塌,需要寻找一种快速安全测量此时填料重量的方法。    解决方案 :通过将荷重元传感器附在车载起重机悬挂铲斗的承重索上,并与NIWLS-9237Wi-Fi数据采集(DAQ)模块连接,轻松读取并记录现场的载重数据,从而测量桥梁路基的重量。   “由于桥梁坍塌的危险性,测试中最需要关注的问题是安全性。因此,采用WLS-9237无线数据采集模块,采集荷重元传感器所测量的施加到桥梁上路基的重量数据。无线系统在提供快速计算坍塌负载所需的测量精度的同时,消除了线缆可能导致的安全性问题。”   使用NI软硬件开发无线测量系统   Ferguson结构工程实验室拥有一套结构
[测试测量]
将无线数据采集方法应用于桥梁坍塌测试
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved