基于LabView的频率稳定度测量原理和应用设计

发布者:tau29最新更新时间:2023-06-09 来源: elecfans关键字:LabView  时间频率 手机看文章 扫描二维码
随时随地手机看文章

引言

时间频率测量是电子测量的重要领域,要实现对时间频率测量,需要有一个好的频率源,在各种频率源中,尤其是对于晶体振荡器来说,稳定度问题是最使人们关注的问题,它表示对于频率稳定度的保持能力。对于稳定度不好的频率源来说,准确度调得再高也是没有意义的。本文介绍了一个基于计算机的多路数据采集、实时显示的频稳测量系统,该系统以计算机、数据采集卡为基本硬件,因此它属于虚拟仪器的范畴。虚拟仪器系统是基于计算机的数字化测量测试仪器,它由计算机、应用软件和仪器硬件三部分组成。虚拟仪器可使用相同的硬件系统,通过不同的软件就可以实现功能完全不同的各种测量测试仪器,即软件系统是虚拟仪器的核心,软件可以定义为各种仪器。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用越来越广泛。


硬件框架及软件设计方案

● 虚拟仪器的硬件框架

目前虚拟仪器主要有以下几种构成方式:PC总线方式的插卡型虚拟仪器;GPIB总线方式的虚拟仪器;VXI总线方式的虚拟仪器;PXI总线方式的虚拟仪器。

● 虚拟仪器的软件设计方案

软件在虚拟仪器中一般起到三个层面的作用:底层驱动层、应用层和人机界面层。底层应用层主要用来对硬件的操作,如对数据采集卡的驱动。应用层则是完成数据的采集存储、转换和分析,仪器的各种功能就在该层编制类似于传统仪器的面板,完成人机交换。

目前较为流行的虚拟仪器软件有美国国家仪器公司的LabView、 LabWindows/CVI 、Measurement studio,惠普公司的HP---VEE等图形化、交互式的编程设计环境,以及通用可视化编程工具VC++、VB、DELPHI、C++ Builder、BC等。

利用LabView实现频率稳定度的测量

● 频率稳定度测量原理

基于LabView的频率稳定度测量原理和应用设计

频率稳定度测量原理如图1所示,以f1和f2分别表示一个标频信号和一个被测频率信号,设它们的标称值均为Nns,让其进行比相。由于它们之间的频率差别和所有的各种噪声的影响,使代表各自相位关系的两鉴相脉冲之间的时间差变化在0~Nns的范围,并且以Nns为一个鉴相周期。若当两鉴相脉冲之间的时间间隔在0或Nns附近时,就会使鉴相双稳态的鉴相工作不正常。为了避免出现这种情况,又反映相位差值的变化,则自然会联想到按某种规律的间隔脉冲的鉴相方法。为控制方便并兼顾避开两比相脉冲的间隔接近0ns和Nns两种情况,比相时,一路鉴相信号的重复周期为Nns,另一路信号的重复周期应大于或等于3倍的Nns,并且标称值是Nns的整数倍。通过适当的门电路,让T1和T2参加鉴相的脉冲之间的时间间隔为Nns~2Nns或2Nns~3Nns。这样,两比相信号每隔4Nns的时间分别对鉴相双稳态触发一次,但鉴相的重复周期仍为Nns。鉴相双稳态输出电压经滤波器输出方波Vf变化的情况,反映了两比相信号间相位差随时间的变化。T1的每个脉冲均参加鉴相;T2由于门电路的控制作用,每连续的四个脉冲中只有一个参加鉴相。但不是固定的分频鉴相,而是选择了与T1鉴相脉冲有一定时间间隔的Nns一段中的时间范围内的脉冲来实现。通过数据采集板卡利用LabView软件对表示被测频率稳定度的方波信号Vf进行采集即是该系统完成的功能。


● 硬件配置

本虚拟仪器系统是插卡型虚拟仪器,包括PC机、ADVANTECH公司PCI-1713数据采集卡,端子板和传输电缆。

● 软件设计

测试程序有三个模块组成:硬件驱动模块、硬件配置及测量参数选择模块、用户接口模块。

硬件驱动模块负责和底层数据采集卡打交道,它将根据用户输入的命令和参数完成一次数据采集并将测试结果还给用户。考虑到程序的模块化和通用性,一般将这部分程序编写成动态链接库。ADVANTECH公司针对该公司生产的各种数据采集板,通过在最底层调用动态库,形成一些独立的功能模块,即该公司板卡的LabView硬件驱动库,同时还提供了很多例程。

在进行频稳测量时,由于处理数据量大,而且要求很高的采集率,所以采取DMA传输方式。图2是硬件驱动模块与数据采集模块相结合实现数据采集流程图。

硬件配置及参数选择模块

LabVIEW程序由三部分构成,即前面板、图形代码及程序图标(即函数模板)和接口板。该部分即为前面板,它实现程序的输入和输出功能,由控制键元素和显示键元素构成。控制键代表程序的输入参数,显示键代表程序的输出值。图3是该系统的主程序界面,左上角接受用户输入的测量参数;左下角是各种功能键,包括频差测量、连续测量、频稳测量、测试报告、停止采样等;右上角是实时数据显示,可以看出数据变化的趋势;右下角则是频稳、频差等的计算结果显示。

用户接口模块相当于管理员,如图4所示。在LabView中即为函数模板,它包括编辑程序代码所涉及到的VI程序和函数,在该系统中它要完成Windows初始化,等待接收并处理用户命令,根据设置模块的参数来调用驱动模块,完成数据采集及数据处理、数据存储的功能。

结束语

通过虚拟仪器的应用,使得测量频率稳定度的界面友好,功能齐全,不仅把测量结果实时显示在界面上,很方便地进行数据的存储、打印,而且提高了测试速度和可靠性。


关键字:LabView  时间频率 引用地址:基于LabView的频率稳定度测量原理和应用设计

上一篇:采用虚拟仪器技术和DSP器件实现多功能电工测量仪的应用方案
下一篇:采用LabView虚拟仪器创建扫频正弦函数实现多种应用

推荐阅读最新更新时间:2024-11-03 18:14

便携式振动分析仪测试研究
  引言   便携式振动仪是随着设备故障诊断需求不断提高而发展起来的面向现场的测试仪器。传统的振动分析仪器具有结构复杂、体积大、操作不方便等特点;而基于单片机的振动采集分析仪虽然体积较小,但是分析能力有限,往往不能够满足振动分析与诊断的特殊要求。   本文所设计的振动分析仪以CompactRIO为采集设备,以Labview为软件开发平台,不但具有体积小、重量轻的特点,而且具有强大、灵活的专业分析能力,适合于测点分散而又不需要持续检测的测试场合。   系统结构   系统采用上下位机结构,下位机将采集到的转速和振动信号通过TCP/IP协议传送给上位机,上位机进行数据保存与分析。结构如图1所示。 图1 系统结构简图   通过在线分析
[测试测量]
便携式振动分析仪测试研究
LABVIEW的深入探索之LABVIEW能否读写物理内存
熟悉LABVIEW的朋友们都知道,LABVIEW提供了类似于汇编语言的IN OUT指令,可以直接操作计算机端口,这在一般编程语言中是禁止的, 体现了LABVIEW强大的硬件操控能力。 除了直接操作端口外,个别情况下我们可能会遇到直接读写物理内存的问题。LABWINDOWS/CVI提供了几个有关物理内存的函数,自然我们可以通过CIN或者DLL,使LABVIEW间接具有操控物理内存的能力,但这不是我们今天要探索的。 下面是CVI支持的IO端口操作函数和有关物理内存操作的函数列表和简单说明。 Port IO Input Byte From Port inp Input Word From Port inpw Input Doubl
[测试测量]
<font color='red'>LABVIEW</font>的深入探索之<font color='red'>LABVIEW</font>能否读写物理内存
盘点NI 2014年关键技术,看软硬件平台如何推动工程创新
NI一直致力于为工程师和科学家提供各种工具来提高效率、加速创新进程,其研发的各种软硬件为工程师开发测量和控制系统提供了革命性的方式。在过去的一年中,NI在嵌入式状态监测、软件设计的仪器、半导体测试等方面都有重要的技术更新。究其动力,主要是应对当前的工程挑战,帮助客户提高生产力并加速创新。先来看几个NI帮助客户解决实际问题的案例。 NI软硬件平台创新案例 案例一:使用PXI与LabVIEW降低MEMS测试成本 ADI在MEMS惯性传感技术上投入多年,所用的传统“big iron”ATE解决方案,不仅成本过高、体积过于庞大,且许多功能都用不到,因此并不能满足其所需要的MEMS测试系统。ADI需针对自己的MEMS产品,构建特定的应用测试系
[测试测量]
基于labview的局域网TCP传输文件夹问题的解决
一.概述 用labview来做局域网的文件传输已经很久了,用tcp顺利解决了大文件的传输,其中包括几个G 的文件,然而当你遇到一个文件夹里面包含的很多小文件需要传输时,一个个单独选择文件显得非常麻烦,因此实现文件夹的传输显得十分迫切,而且会使得传输程序更加全面,更加人性化。 二.软件流程图 以前所做的程序能够将一个文件顺利传输到客户端,因此传输文件夹里面的多个文件的基本思路就是让传输单个文件的程序循环多次,也就是在它的外面加一个for循环,循环次数由该文件夹所包含的文件个数决定,但是考虑到也可能传输的仅仅是一个文件,或者文件夹里面没有文件或只有几个空文件夹而已,因此软件的设计显得比想象中复杂了许多,最终的结果也确实如此,下图是软
[测试测量]
Labview中定时函数之间的区别
第一个定时函数(时间延迟):在VI中插入时间延迟,指定在运行调用VI之前延时的秒数。默认值为1.000。 第一个定时函数(等待(ms)):等待指定长度的毫秒数,并返回毫秒计时器的值。该函数进行异步系统调用,但函数节点却是同步操作的。所以,直至指定时间结束,函数才停止执行;LabVIEW调用VI时,如毫秒计时值为112毫秒,等待时间(毫秒)为10毫秒,则毫秒计时值为122毫秒时,VI执行结束。 等待直至毫秒计时器的值为毫秒倍数中指定值的整数倍。该函数用于同步各操作。在循环中调用该函数可控制循环执行的速率。但此时第一个循环周期可能很短。 例如LabVIEW调用了一个VI,如毫秒倍数为10毫秒,毫秒计时值为112毫秒。VI将
[测试测量]
采用LabVIEW的海洋环境多物理场测量系统设计
一、引言    近些年来,随着人类对于海洋开发力度的增加,关于海洋方面的研究越来越广泛深入。相应地,海洋中各种环境物理场也成为了研究关注的焦点。因为对于海洋环境物理场的了解,意味着人们可以更加熟悉海洋,利用其环境物理场的变化规律,使我们在海洋地质勘测、地震预警、海洋捕捞、石油勘探等领域,更加的方便、有效。    而随着海洋物理场水下物理场测量测试需求的增加,传统的测试手段已经无法满足现在的测量需要,繁多的各物理场采集系统硬件设备测量灵活性差,系统的安全性和可靠性低的缺点,已严重限制了在需要多个环境物理场同时进行测量中的应用。因此,对于一个小型化、智能化、布放便捷的海洋环境物理场测量系统的研究开发已经成为必需。    二、硬件系统介
[测试测量]
采用<font color='red'>LabVIEW</font>的海洋环境多物理场<font color='red'>测量</font>系统设计
LabVIEW系列——错误簇的传递
从以下示例可以得出结论: 1、图一出现的三种错误,分别位于打开/创建/替换文件函数,写入文本文件函数,读取文件文件函数。说明三个函数都被运行了。 2、图二只出现了一种错误,位于打开/创建/替换文件函数,其他两个函数并没有执行,说明错误链不仅仅具有传递功能,还可以在错误发生后可以避开其他意外的错误继续产生。
[测试测量]
利用LabVIEW工具包实现Multisim自动化
该文档介绍了LabVIEW Multisim连接工具包(ß版)。该工具包可从ni.com/labs获得,它是Multisim自动化API的一个封装程序。利用这一组针对LabVIEW的工具包VI,您可以创建获取电路仿真数据的应用。 在该篇白皮书中,您将学习关于Multisim自动化的使用技巧和该工具包的有关知识。 目录 引言 改进验证的必要性 Multisim与LabVIEW 仿真的自动化 LabVIEW Multisim连接工具包 该工具包的应用 利用LabVIEW连接工具包的Multisim自动化的用例 引言 传统的电路设计与测试领域,因为不同的工具和缺少一个便于传输设计和测试数据的通用接口,而继
[测试测量]
利用<font color='red'>LabVIEW</font>工具包实现Multisim自动化
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved