摘要:温度传感器及有关电路将温度转化为电脉冲的脉宽,单片机将测得的脉冲宽度的值转化为与之对应的温度值。与设定的温度相比较后,以温度偏差及其变化量为输入、加热量为输出,通过模糊控制算法,就可达到水温自动调节的目的。对任意温度对应的脉宽还可进行自动测量,并加以显示。
关键词:AT89C2051 单片机 模糊控制 温度 电热水器
模糊控制比传统的PID等控制方法,在强时变、大时滞、非线性系统中的控制效果有着明显的优势。将模糊控制技术应用于家电产品在国外已是很普遍的现象。
单片机是家用电器常用的控制器件,把二者结合起来,可使控制器的性能指标达到最优的目的。基于模糊控制技术的单片机控制的电热水器,是对传统的电热水器开关控制的改造,具有达到设定温度的时间短、稳态温度波动小、反应灵敏、抗干扰能力强、节省电能等优点。
1 硬件电路总体设计
电热水器水温自动调节器以AT89C2051单片机为核心,由多谐振荡器电路、温度设定电路、单片机。设定温度显示电路、控制信号隔离输出电路等几部分组成,结构框图如图1所示。
①多谐振荡电路。由G1、G2、G3、G4、Rt、Rs、C组成,具体电路如图2。其中Rt是具有负温度系数的热敏电阻(0~100℃时,阻值在3~1kΩ之间变化),是本电路中的温度传感器,用环氧树胶涂于其外表后置于热水中。Rs是限流电阻,限值很小,只有100Ω。非门采用TTL门74LS04电路,振荡周期T≈2.2RtC,脉宽为1.1RtC。可见,脉宽与Rt有一一对应关系,因此,温度与脉宽也就有一一对应关系。
②AT89C2051单片机。本控制器的核心,模糊控制就是用它控制软件来实现的。
③温度设定电路。通过一个按键产生脉冲从INT1输入单片机来调节水温的设定值。
④设定温度显示电路。单片机将设定的温度值通过动态扫描的方法输出,数码管上可直接显示设定温度。在自动测定各温度对应的T0的计数值时,还可用来显示TL0的值。
⑤控制信号隔离输出电路。通过光耦将加热强电电路与单片机隔离,防止其干扰单片机的工作。单片机的输出控制信号控制两电热丝的断通,从而调节水温。
2 工作原理
INT1先用于各温度值对应的脉宽计数器值的测量显示。中断1的中断服务程序先固化自动测量、显示的中断服务程序如图3所示。主程序不变,主程序如图4所示。从INT1输入的设定温度用的脉冲将引起中断,中断服务程序可对与一定水温对应的电脉冲宽度的计数值(TL0)进行测量并显示,记下其数值后便可制定“温度表”(与一定温度对应的TL0值并存放于程序存储器中的表),将“温度表”固化于程序存储器中。然后,INT1再用于温度的设定,将中断1的服务程序换为预温温度的程序,如图5所示。让定时器T1定时中断,配合软件计数器,每隔5s测量1次温度的当前值。将测得的脉宽转化为温度值是这样实现的:先让脉冲从INT0进入单片机,T0在INT0为高电平时开始定时,变为低电平时停止,于是在TL0中得到脉宽对应的定时计数值,
查找与“温度表”中与计数值一一对应关系的温度。将用的脉冲将引起中断,中断服务程序可对与一定水温对应的电脉冲宽度计数值(TL0)进行测量并显示,记下其数值后便可制定“温度”(与一定温度对应的TL0值并存放于程序存储器中的表),将“温度表”固化于程序存储器中。然后,INT1再用于温度的设定,将中断1的服务程序换为预置温度的程序,如图5所示。让定时器T1定时断,配合软件计数器,第隔5s测量1次温度的当前值。将测得的脉宽转化为温度值是这样实现的:先让脉冲从INT0进入单片,T0在INT0为高电 平时开始定时,变为低电平时停止,于是在TL0中得到脉宽对应的定时计数值,查找与“温度表”中与计数值一一对的温度。将温度的测量值及前次测得的值分别存于一个存储单元,通过模糊控制程序以决定两电热丝的断情况。初始化程序如下:
MAIN:MOV TMOD,#1AH;T1工作于方式1,定时100ms;(配合软件计数器定时5s)
;T0工作于方式2,使用门控位,定时
MOV TM0,#20 ;TM0为设定温度存储单元,设定初始温度为20℃
MOV TH0,#0
MOV TL0,#0
MOV TH1,#3CH ;T1置产生100ms定时的初值(tosc=6MHz)。
MOV TL1,#0B0H
MOV TMER,#50 ;TMER为软件计数器单元;50%26;#215;100ms=5s
SETB TR1 ;启动定时器T1
SETB EA ;开CPU中断
SETB EX1 ;开外部中断1
SETB IT1 ;设定为边沿触发。
SETB PX1 ;设定温度的中断优先级为高级中断。
SETB ET1 ;开T1中断
SETB P3.7 ;不加热
SETB P1.7
……
3 模糊控制的原理
模糊控制器的输入为测得温度与设定温度的偏差E(E=t0-t;t0为设定的水温,t为测得的水温。)以及偏差的变化量ΔE(ΔE=t本-t前,其中t前为前次测得的温度,t本为本次测得的温度),输出为电热丝加热量U。将E分为四个模糊子集B(大)、M(中)、S(小)、N(负),对应温度的偏差为:t0-t>TM1℃、TM2℃TM2>0)。ΔE分为三个模糊子集P(正)、Z(零)、N(负),对应的偏差变化量为:t本-t前>A0、-A00);电热丝加热量分为四个模糊子集B(大)、M(中)、S(小)、Z(零),对应于二极电热丝的四种状态的组合:电热丝1电热丝2都加热、电热丝1加热、电热丝2加热、电热丝1电热丝2都不加热(其中电热丝1的功率大于电热丝2的功率)。模糊控制规则如表1所列。
表1
ΔE
E
P
Z
N
B
B
B
B
M
M
M
S
S
S
S
Z
N
Z
Z
Z
表2
E+ΔE
E
ΔE
1
0
-1
6
7
6
5
3
4
3
2
1
2
1
0
-1
0
-1
-2
4 模糊控制程序
由单片机对温度进行测量,将本次测得的温度与设定的温度值相减得到温度的偏差E,并存储到存储单元TMS;将本次测得的温度减前次测量的温度,得到温度的偏差变化量ΔE并存入存储单元TMCB;根据温度的偏差及偏差的变化量由模糊控制表决定电热丝的断闭。如果将E的四个模糊子集N、S、M、B分别用数字-1、1、3、6表示,ΔE的四个模糊子集N、Z、P分别用数字-1、0、1表示,则根据模糊控制规则表1,可得到如表2所示的E+ΔE。将表2与表1对照可以看出:当E+ΔE≤0时,加热量为Z;当1≤E+ΔE<3时,加热量为S;当3≤E+ΔE<5时,加热量为M;当E+ΔE≥5时,加热量为B。故可编制所求的模糊控制程序。
该温度控制器已应用于笔者家中自制的电热水器中,经几个月的使用证明非常实用,且性能稳定。
引用地址:基于模糊控制的水温自动调节器
小广播
热门活动
换一批
更多
最新测试测量文章
更多精选电路图
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
11月16日历史上的今天
厂商技术中心