电容的串联
-
一般来说由于寄生参数的影响,开关频率增加其损耗也会增加,但是铝电解电容是一个特例,其等效电阻会随着频率增加而减小,因此损耗会随频率增加而减小。这是什么原因,等效串联电阻还和频率有关系?...
作者:乱世煮酒论天下回复:7
-
电容和水泥电阻串联的 阻容降压的 电能计量表 ,用了几年之后,出现水泥电阻烧坏(水泥崩了),数码管不显示的情况,请帮忙分析一下原因,有没有可能是 电能表内部的电容与外部 的用电设备中的电感形成了并联谐振...
作者:一沙一世回复:33
-
输入电源电路中电容串联的这个R1电阻,起到什么作用? 输入电源电路中电容串联的这个R1电阻,起到什么作用? 抑制通电瞬间滤波电容的充电浪涌。...
作者:安圣基回复:41
-
...
作者:hi5回复:22
-
具体提米如下,没说交流电频率,是不是能当成电容短路,电压为1v? 用一个1v的交流电源驱动一个1Ω电阻和一个1欧电抗电容串联,电容电压多少?...
作者:天天1回复:7
-
串联电容的问题 仿真没有错误,而且与有无MOS没有关系。 两支电容串联,每支电容又没有单独的放电通路,理想电容两端电压应该保持不变(注意:每一端对地电压可以变化,而且同时变化)。...
作者:mogyz回复:11
-
...
作者:wanglan123回复:11
-
电容器的主要技术指标有电容量、耐压值、耐温值。除了这三个主要指标外,其他指标中较重要的就是等效串联电阻(ESR)了。...
作者:f117c回复:2
-
我在TI的一款锂电池保护(电荷计)芯片手册里看到这样一个电路,他们把2颗100nF的电容串联在一起,像红框里那样。...
作者:littleshrimp回复:12
-
请问电源入口处两电容串联意义是什么 ,这两个电容容值都是102,用一个104不可以吗,而且输入才12V,如果说的耐压原因,但是一般贴片的电容耐压值也够了啊 两个电容串联有什么意义 『这两个电容容值都是...
作者:aq1261101415回复:16
-
方波串联电容会产生脉冲波,那脉冲波串联电容会产生什么波形呢? 仿真和实测显示还是脉冲波。 那么,请教各位前辈,脉冲波为什么就不会经过一个微分运算呢?...
作者:zhaoyanhao回复:24
-
下面这个电路 在1、2两 脚之间接有一 甘簧管,当带有磁钢的T5577卡 靠近 甘簧管 时,甘簧管导通,使 Card_Check1 处于低电平 ,而当 T5577卡移开时,甘簧管 内部电路处于断开状态...
作者:深圳小花回复:6
-
信号线(时钟)串联电阻电容的作业,如何选取电容电阻的大小? R124和C224的作用 想必是时钟线比较长,需要阻抗匹配,所以在芯片输出端串联51欧电阻。 比较长?...
作者:928083047回复:5
-
如图所示,右边产品的原理图里面的三个红色元器件,是参考电路里面没有的。这些器件的作用是什么?...
作者:lingking回复:6
-
1-3-3.反转式串联开关电源储能滤波电容的计算 反转式串联开关电源储能滤波电容参数的计算,与串联式开关电源储能滤波电容的计算方法基本相同。...
作者:木犯001号回复:0
-
串联式开关电源储能滤波电容的计算(2) 1-2-4.串联式开关电源储能滤波电容的计算 我们同样从流过储能电感的电流为临界连续电流状态着手,对储能滤波电容C的充、放电过程进行分析,然后再对储能滤波电容...
作者:木犯001号回复:2
-
既然电容会存储和释放电流,为什么说一个RC串联的电路中各点的电流又是相同的 既然电容会存储和释放电流,为什么说一个RC串联的电路中各点的电流又是相同的 电容存储的是电荷,不是电流 没有任何东西可以存储电流...
作者:shishougm回复:5
-
1-3-3.反转式串联开关电源储能滤波电容的计算 反转式串联开关电源储能滤波电容参数的计算,与串联式开关电源储能滤波电容的计算方法基本相同。...
作者:noyisi112回复:0
-
1-2-4.串联式开关电源储能滤波电容的计算我们同样从流过储能电感的电流为临界连续电流状态着手,对储能滤波电容C的充、放电过程进行分析,然后再对储能滤波电容C的数值进行计算。...
作者:noyisi112回复:0
-
现在想用这个颗芯片,在其他地方看到这个问题,感觉不太理解,咨询各位 10uF的电容和220nF的电容是作为CVDD是并联还是串联?...
作者:kal9623287回复:4
-
...
课时1:使用TI的串联电容降压转换器进行设计:高频挑战 课时2:使用TI的串联电容降压转换器进行设计:串联电容降压拓扑 课时3:使用TI的串联电容降压转换器进行设计:设计规格和频率选择 课时4:采用TI的串联电容降压转换器进行设计:电感选择 课时5:采用TI系列电容降压转换器进行设计:串联电容选择 课时6:采用TI的串联电容降压转换器进行设计:输入和输出电容选择 课时7:使用TI的串联电容降压转换器进行设计:反馈网络选择 课时8:采用TI的串联电容降压转换器进行设计:导通时间电阻选择 课时9:使用TI的串联电容降压转换器进行设计:电流限制选择 课时10:采用TI的串联电容降压转换器进行设计:软启动时间选择 课时11:采用TI的串联电容降压转换器进行设计:设计结果 课时12:使用TI的串联电容降压转换器进行设计:转换器布局
显示更多 -
开关电源之Buck变换器的环路分析与补偿 1、传递函数H(s) 0:43-3:06 2、控制理论回顾 3.07:-4:21 3、系统稳定准则 4:23-8:50 4、Buck 变换器架构回顾...
课时1:开关电源之Buck变换器的环路分析与补偿 课时2:开关电源之Buck变换器的环路分析与补偿 课时3:开关电源之Buck变换器的环路分析与补偿 课时4:开关电源之Buck变换器的环路分析与补偿 课时5:开关电源之Buck变换器的环路分析与补偿 课时6:开关电源之Buck变换器的环路分析与补偿
显示更多 -
18 叠加定理 19 齐次定理和替代定理 20 戴维宁定理 21 诺顿定理和最大功率传输定理 22 最大功率传输定理微课(李长杰) 23 特勒根定理 24 电容元件和电感元件(1) 25...
课时1:电路和电路模型 课时2:电流和电压的参考方向 课时3:电功率和能量 课时4:电阻元件 课时5:电压源和电流源 课时6:受控电源 课时7:基尔霍夫定律 课时8:简单电阻电路的等效变换 课时9:电阻星形连接与三角形连接的等效变换 课时10:电源的等效变换 课时11:电路的图 课时12:KCL和KVL的独立方程数 课时13:支路电流法 课时14:回路电流法(1) 课时15:回路电流法(2) 课时16:结点电压法(1) 课时17:结点电压法(2) 课时18:叠加定理 课时19:齐次定理和替代定理 课时20:戴维宁定理 课时21:诺顿定理和最大功率传输定理 课时22:最大功率传输定理 课时23:特勒根定理 课时24:电容元件和电感元件(1) 课时25:电容元件和电感元件(2) 课时26:电容元件和电感元件(3)换路定律和初始值的确定(1) 课时27:换路定律和初始值的确定(2)一阶电路的动态响应(1) 课时28:一阶电路的动态响应(2) 课时29:一阶电路的动态响应(3)一阶电路的三要素法(1) 课时30:一阶电路的三要素法(2) 课时31:一阶电路的三要素法(3)一阶动态电路的阶跃响应 课时32:二阶电路的动态响应(1) 课时33:二阶电路的动态响应(2) 课时34:正弦量及其相量表示(1) 课时35:正弦量及其相量表示(2)电路定律的相量形式 课时36:复阻抗和复导纳(1) 课时37:复阻抗和复导纳(2) 课时38:正弦稳态电路的分析(1) 课时39:正弦稳态电路的分析(2) 课时40:正弦稳态电路的功率(1) 课时41:正弦稳态电路的功率(2) 课时42:正弦稳态电路的功率(3)功率因数的提高 课时43:正弦稳态电路的功率(4)最大功率传输 课时44:串联谐振电路(1) 课时45:串联谐振电路(2) 课时46:串联谐振电路(3)并联谐振电路(1) 课时47:并联谐振电路(2)串并联谐振电路 课时48:互感电路的基本概念(1) 课时49:互感电路的基本概念(2) 课时50:互感电路的计算(1) 课时51:互感电路的计算(2) 课时52:空心变压器 课时53:理想变压器 课时54:三相电路的基本概念(1) 课时55:三相电路的基本概念(2)对称三相电路的计算(1) 课时56:对称三相电路的计算(2) 课时57:对称三相电路的计算(3)不对称三相电路 课时58:三相电路的功率及测量(1) 课时59:三相电路的功率及测量(2) 课时60:非正弦周期信号的谐波分析,有效值和平均值 课时61:非正弦周期电流电路的功率,非正弦周期电流电路的计算 课时62:滤波器简介 课时63:拉普拉斯变换、反变换及动态电路复频域模型 课时64:动态电路的复频域分析 课时65:网络函数(1) 课时66:网络函数(2) 课时67:割集 课时68:关联矩阵,回路矩阵,割集矩阵 课时69:回路电流方程的矩阵形式 课时70:结点电压方程的矩阵形式 课时71:割集电压方程的矩阵形式 课时72:状态方程(1) 课时73:状态方程(2) 课时74:二端口网络及其参数方程(1) 课时75:二端口网络及其参数方程(2) 课时76:二端口网络及其参数方程(3)二端口网络的等效电路(1) 课时77:二端口网络的等效(2)二端口网络的连接
显示更多 -
本课程主要研究电工电子器件和电工电子电路的基本工作原理及其应用。...
课时1:绪论 课时2:电路的作用与组成、电路模型、参考方向、欧姆定律 课时3:电源的工作状态 课时4:基尔霍夫定律、电路中电位的概念与计算 课时5:电阻串并联连接的等效变换、电阻星形联结与三角形联结的等效变换 课时6:电源的两种模型及其等效变换 课时7:支路电流法 课时8:结点电压法 课时9:叠加定理 课时10:戴维宁定理与诺顿定理 课时11:受控电源电路的分析 课时12:电阻元件、电感元件与电容元件、储能元件与换路定则 课时13:RC电路的响应 课时14:一阶线性电路暂态分析的三要素法 课时15:微分电路和积分电路、RL电路的响应 课时16:正弦电压与电流、正弦量的相量表示法 课时17:单一参数的交流电路 课时18:电阻、电感与电容元件串联的交流电路(1) 课时19:电阻、电感与电容元件串联的交流电路(2)、阻抗的串联 课时20:阻抗的串联与并联(3) 课时21:复杂正弦交流电路的分析与计算、谐振电路、功率因数的提高(1) 课时22:复杂正弦交流电路的分析与计算、谐振电路、功率因数的提高(2) 课时23:三相电压、负载星形联结的三相电路、负载三角形联结的三相电路(1) 课时24:三相电压、负载星形联结的三相电路、负载三角形联结的三相电路(2) 课时25:三相功率 课时26:安全用电 课时27:变压器的结构、原理、外特性与效率(1) 课时28:变压器的结构、原理、外特性与效率(2) 课时29:变压器绕组的极性、特殊变压器 课时30:三相异步电动机的构造 课时31:三相异步电动机的转动原理 课时32:三相异步电动机的电路分析 课时33:三相异步电动机的转矩与机械特性 课时34:三相异步电动机的起动与调速 课时35:三相异步电动机的制动 课时36:三相异步电动机的铭牌数据及选择 课时37:直流电机的构造、直流电机的基本工作原理及其机械特性 课时38:并励电动机起动与反转、调速 课时39:常用控制电器 课时40:笼型电动机直接起动、正反转控制电路 课时41:行程控制、时间控制 课时42:可编程控制器的结构和工作方式 课时43:可编程控制器的程序编制(1) 课时44:可编程控制器的程序编制(2) 课时45:可编程控制器应用举例 课时46:继电器接触器控制系统设计 课时47:可编程控制器系统设计 课时48:电工技术复习 课时49:半导体的导电特性、PN结及其单向导电性 课时50:二极管、稳压二极管 课时51:双极型晶体管、光电器件(1) 课时52:双极型晶体管、光电器件(2) 课时53:共发射极放大电路的组成 课时54:放大电路的静态分析 课时55:放大电路的动态分析(1) 课时56:放大电路的动态分析(2) 课时57:放大电路的动态分析(3) 课时58:静态工作点的稳定(1) 课时59:静态工作点的稳定(2) 课时60:放大电路的频率特性 课时61:射极输出器 课时62:差分放大电路 课时63:功率放大器 课时64:场效晶体管及其放大电路 课时65:集成运算放大器的简单介绍 课时66:运算放大器在信号运算方面的应用(1) 课时67:运算放大器在信号运算方面的应用(2) 课时68:运算放大器在信号运算方面的应用(3) 课时69:有源滤波器、采样保持电路 课时70:电压比较器(1) 课时71:电压比较器(2) 课时72:运算放大器在波形产生方面的应用 课时73:反馈的基本概念、放大电路中的负反馈(1) 课时74:放大电路中的负反馈(2) 课时75:放大电路中的负反馈(3) 课时76:振荡电路中的正反馈(1) 课时77:振荡电路中的正反馈(2) 课时78:整流电路(1) 课时79:整流电路(2) 课时80:滤波器 课时81:直流稳压电源 课时82:电力电子器件 课时83:可控整流电路(1) 课时84:可控整流电路(2) 课时85:逆变电路 课时86:脉冲信号 课时87:基本门电路及其组合 课时88:TTL门电路和CMOS门电路 课时89:逻辑代数(1) 课时90:逻辑代数(2) 课时91:组合逻辑电路的分析和综合 课时92:加法器 课时93:编码器 课时94:译码器和数字显示、数据选择器和数据分配器 课时95:双稳态触发器(1) 课时96:双稳态触发器(2) 课时97:寄存器 课时98:计数器(1) 课时99:计数器(2) 课时100:计数器(3)
显示更多 -
本视频致力于让电路小白能更清楚快速的了解电路知识 本教程转载自youtube,博主主页:https://www.youtube.com/c/BufIdea...
课时1:Passive_sign_convention_被动符号通则讲解 课时2:KCL基尔霍夫电流定律讲解 课时3:Passive_sign_convention_被动符号通则讲解_2 课时4:KVL基尔霍夫电压定律1 课时5:KVL基尔霍夫电压定律2 课时6:理想电压源与理想电流源 课时7:制作一个定电流源测试并且说明工作原理 课时8:固定电流源与限流电阻的性能比较 课时9:欧姆定律1 课时10:欧姆定律2 课时11:电阻串联1 课时12:电阻串联2 课时13:电阻分压1 课时14:测量电压不准?测量电阻分压与误差存在的问题! 课时15:高输入阻抗缓衝器解决电压量测误差 课时16:电阻分压2 课时17:电阻并联 课时18:相同电阻并联的整体电阻值是多少?实测结果与计算结果吻合吗? 课时19:任意材料电阻与电阻并联知识应用 课时20:如何选择好的导线?实际测试导线电阻与长度和面积之间的关係 课时21:电阻分流1 课时22:为什麽测量电流不准?如何解决这个问题? 课时23:电阻分流2 课时24:电阻大小与分流的关系 课时25:魔术与分流 课时26:电阻上的功率消耗 课时27:电阻功率消耗应用_家裡为何需要220V电源 课时28:线路上的功率消耗 课时29:非线性电阻 课时30:参考点与任意两点压差1 课时31:参考点与任意两点电压差2 课时32:小鸟站在高压电线上没事? 课时33:电流源直接并联的处理方法 课时34:一堆电阻串联并联的等效阻抗计算练习 课时35:相依电源Dependent_Source 课时36:相依电源电路的计算与OPA_Buffer增益的证明 课时37:节点电压分析Nodal_Analysis 课时38:4_Nodal_Analysis电压源与电流源都有 课时39:节点分析应用_汽车接电分析 课时40:迴路电流分析 课时41:节点电压与支路电流分析是否都可以解释整个电路的特性 课时42:包含相依电源的求解反相放大器增益的推导 课时43:运用电路分析技巧证明opa反相放大器输入端虚短路特性 课时44:具有相依电源的Loop_and_Nodal_Analysis 课时45:目前分析技巧在电路设计上的案例 课时46:等效电路 课时47:等效电路的应用 课时48:重叠定理Superposition 课时49:重叠定理应用计算电池并联数量与输出电压关係 课时50:深入了解线性电路的等效 课时51:现实生活中的等效需要考虑更多 课时52:诺顿与戴维宁等效电路概念 课时53:将一个电路换成戴维宁与诺顿等效的示范 课时54:为何戴维宁电路可以等效其它线性电路 课时55:运用戴维宁等效电路求解问题 课时56:戴维宁等效电路的另一种寻找方法 课时57:戴维宁等效电路的另一种寻找方法结论修正 课时58:戴维宁等效电路的另一种寻找方法范例 课时59:电路中只有相依电源的戴维宁等效电路 课时60:同时具有相依与独立电源的戴维宁等效电路求解方法 课时61:理想运算放大器Ideal_Operational_Amplifier_OPA 课时62:可变电阻Variable_Resistor 课时63:OPA虚短路特性Virtual_Short 课时64:OPA反相放大器OPA_Inverting_Configuration 课时65:OPA反相放大器的输入阻抗问题The_influence_of_finite_input_resistance_of_inverting_conf 课时66:OPA正相放大器OPA_Noninverting_Configuration 课时67:OPA正相放大器高输入阻抗的优点The_benefit_of_high_input_resistance_of_noninverting_con 课时68:OPA差动放大器OPA_Differential_Amplifier 课时69:有限输入阻抗的影响The_influence_of_finite_input_resistance 课时70:OPA差动放大器分析范例OPA_Differential_amplifier_example 课时71:高输入阻抗OPA差动放大器High_input_resistance_OPA_differential_amplifier 课时72:OPA加法器_Summing_Amplifier 课时73:OPA_BUFFER应用案例Application_example_of_OPA_Buffer 课时74:反相放大器的应用案例Application_example_of_inverting_configuration 课时75:输入共模讯号问题The_problem_of_common_mode_input_signal 课时76:差动放大器的好处之一(One of the benefit of differential amplifier) 课时77:为何需要电容?Why_electronic_circuit_requires_capacitor 课时78:电容电流与电压关係Current–voltage_terminal_characteristics_of_the_capacitor 课时79:电容短路电流有多大? 课时80:电容任意时刻的电压 课时81:例题-电容任意时刻电压 课时82:电容储能 课时83:例题:一个电源输出电压的维持时间 课时84:电容串联 课时85:例题 错误的电容储能实验 课时86:零初始值电容的分压 课时87:例题_错误设计导致电容爆炸 课时88:电容并联后的总容量 课时89:电容串并练习 课时90:OPA积分器 课时91:例题_OPA积分器任意时刻输出电压计算 课时92:应用OPA积分器设计一个计时转态电路31 课时93:应用OPA积分器设计一个计时转态电路32 课时94:应用OPA积分器设计一个计时转态电路33 课时95:OPA微分器 课时96:例题_微分器输出波形计算 课时97:动手黏一个微分器来瞧瞧 课时98:电感是一个储能元件?电感的长相与看见电感的储能! 课时99:电感器的电流长相?!介绍电感的电压与电流关係!实际测试电感与电阻的电流波形差别! 课时100:电感器|电感器的电压?(电流为直线时)电感器产生各种电压的时机!实测电感器电压?
显示更多 -
《数字大规模集成电路》是讲授数字大规模集成电路基础理论和知识的微电子专业研究生基础课,既是微电子专业学生的核心课程也是供电类专业学生学习数字集成电路设计的基础课程。...
课时2:集成电路技术的意义 课时3:开关和逻辑 课时4:静态互补CMOS逻辑原理 课时5:静态互补CMOS逻辑门的设计和本节小结 课时6:集成电路工艺 课时7:集成电路版图 课时8:Scaling Down 课时10:MOS管原理 课时11:阈值电压 课时12:MOS管的基本电流方程 课时13:沟道长度调制效应 课时14:速度饱和 课时15:MOS管的手工分析模型 课时16:MOS管的电容 课时17:体效应 课时18:短沟效应、DIBL和本节小结 课时19:亚阈值电流 课时20:栅氧漏电流 课时21:扩散区pn结漏电流 课时22:栅极感应漏端漏电与本节小结 课时23:MOS管的温度特性 课时25:电压传输特性 课时26:VTC分析方法 课时27:开关阈值电压与本节小结 课时28:单级噪声容限 课时29:电压传输特性的稳定性 课时30:多级噪声容限及本节小结 课时31:复杂逻辑门的静态特性 课时33:用于延时分析的反相器模型 课时34:反相器的驱动电阻 课时35:反相器的负载电容 课时36:门延时的组成 课时37:反相器延时的设计准则 课时38:复杂逻辑门的驱动电阻 课时39:大扇入逻辑门的尺寸设计 课时40:考虑内部节点电容的延时模型 课时41:复杂逻辑门延时与输入图形的关系 课时42:逻辑门延时模型 课时43:本征延时 课时44:努力延时 课时45:关键路径 课时46:固定级数时的逻辑路径的尺寸优化 课时47:级数可变时逻辑路径的尺寸优化 课时48:逻辑路径尺寸优化方法小结 课时49:电路级优化 课时50:逻辑结构优化 课时51:本章总结 课时53:集成电路的功耗问题 课时54:逻辑门电容充电功耗模型 课时55:开关活动性 课时56:虚假翻转 课时57:直流通路引起的功耗和本节小结 课时58:CMOS逻辑门的静态功耗分量 课时59:亚阈值漏电流功耗 课时60:堆叠效应 课时61:本节小结 课时62:功耗优化指标 课时63:电源电压优化 课时64:VDD-尺寸的联合优化 课时65:VDD-VT联合优化 课时67:集成电路中的导线 课时68:互连线的寄生电容 课时69:互连线的寄生电阻 课时70:电感的影响和寄生效应小结 课时71:集总电容模型 课时72:分布rc模型 课时73:考虑互连线延时的电路延时 课时74:互连线延时的优化 课时75:电容串扰及其影响 课时76:克服电容串扰的方法 课时77:IR Drop 课时78:L(didt) 课时79:互连线的信号完整性小结 课时80:互连线的Scaling Down 课时82:组合逻辑 课时83:静态互补CMOS逻辑的特点 课时84:伪NMOS逻辑门的静态特性 课时85:伪NMOS逻辑门的传播延时 课时86:伪NMOS逻辑门的功耗与特点 课时87:差分串联电压开关逻辑 课时88:传输管逻辑的工作原理 课时89:传输管逻辑的延时和功耗 课时90:电平恢复技术 课时91:低阈值传输管 课时92:CMOS传输门 课时93:传输管逻辑信号的完整性问题 课时94:动态逻辑 课时95:动态逻辑基本原理 课时96:串联动态门 课时97:动态逻辑的速度 课时98:动态逻辑的功耗 课时99:电荷泄漏 课时100:电荷共享 课时101:电容耦合 课时102:组合逻辑类型的选择 课时104:时序逻辑和时序单元 课时105:双稳态原理 课时106:锁存器 课时107:主从边沿触发寄存器 课时108:时序参数的定义
显示更多 -
因其低成本的特点,铝电解电容器一直都是电源的常用选择。但是,它们寿命有限,且易受高温和低温极端条件的影响。铝电解电容器在浸透电解液的纸片两面放置金属薄片。...
-
因其小尺寸、低等效串联电阻(ESR)、低成本、高可靠性和高纹波电流能力,多层陶瓷 (MLC) 电容器在电源电子产品中变得极为普遍。一般而言,它们用在电解质电容器 leiu 中,以增强系统性能。...
-
在《如何处理高di/dt负载瞬态(上)》中,我们讨论了电流快速变化时一些负载的电容旁路要求。我们发现必须让低等效串联电感(ESL)电容器靠近负载,因为不到0.5 nH便可产生不可接受的电压剧增。...
-
IC 封装中接合线的典型电感在1 nH 范围内,印刷电路板的过孔电感在0.2 nH 范围内。 此外,还有一个与旁路电容有关的串联电感,如图 1 所示。...
-
图 1 简单的缓冲器可驱动2 Amps 以上的电流。 图 1 中的示意图显示了一个 NPN/PNP 发射跟随器对,其可用于缓冲控制 IC 的输出。...
-
开关节点接地寄生电容,产生共模电流。 图 1 是一个 LED 电源的示意图,其显示了该降压调节器中共模电流产生的主要原因。原因就是开关节点接地电容。...
-
您在为一个低功耗、离线电源选择输入滤波电容时,会出现一种有趣的权衡过程。您要折中地选取电容的纹波电流额定值,以适合电源工作所需的电压范围。...
-
一般而言,我们将小号(5-9)的LED 串联起来,使用一个电源将线电压转换为低电压(通常为数十伏),这时的电流约为 350 到 700mA。...
-
图 1 在 1/2 输出电流处出现降压输入电容RMS电流峰值 在过去几年中,陶瓷电容器的容积效率和成本两方面都取得了巨大的进步。陶瓷电容器现在成为绕过电源功率级的首选。...
-
电路的电感可以为有意的也可以是偶然发生的,例如:以太网供电 (PoE) 系统的长通电线路。该图还显示了步进的输入电压波形,以及阻尼系数小于 1 时的生成输出电压。(大于 1 的阻尼系数没有过冲。)...
-
存储于漏极电感中的能量可使 MOSFET 产生雪崩现象,因此要添加一个由 D1、R24 和 C6 组成的钳压电路。该电路的钳位电压取决于漏电的能量大小以及电阻器的功率消耗。...