基于DSP的电力线载波OFDM调制解调器

发布者:EnchantedBreeze最新更新时间:2006-08-22 来源: EDN China关键字:载波  电力线  解调 手机看文章 扫描二维码
随时随地手机看文章

  利用电力线作为信道进行通信是解决最后一公里问题的一个很好的方法。然而电力线作为通信信道,存在着高噪声、多径效应和衰落的特点。OFDM技术能够在抗多径干扰、信号衰减的同时保持较高的数据传输速率,在具体实现中还能够利用离散傅立叶变换简化调制解调模块的复杂度,因此它在电力线高速通信系统中的应用有着非常乐观的前景。文中给出一种基于正交频分复用技术(OFDM技术)的调制解调器的设计方案。

  1 OFDM原理

  OFDM全称为正交频分复用(Orthogonal Frequency Division Multiplexing),其基本思想是把高速数据流经过串/并变换,分成几个低比特率的数据流,经过编码、交织,它们之间具有一定的相关性,然后用这些低速率的数据流调制多个正交的子载波并迭加在一起构成发送信号。每个数据流仅占用带宽的一部分,系统由许多子载波组成。在接收端用同样数量的载波对发送信号进行相干接收,获得低速率信息数据后,再通过并/串变换得到原来的高速信号。从而降低子载波上的码率,加长码元的持续时间,加强时延扩展的抵抗力。 在OFDM中,为了提高频带利用率,令各载波上的信号频谱相互重叠,但载波间隔的选择要使这些载波在整个符号周期上正交,即相加于符号周期上的任何两个子载波乘积为零。这样,即使各载波上的信号频谱间存在重叠,也能无失真复原。当载波间最小间隔等于符号周期的倒数的整数倍时,可满足正交性条件。实际上为实现最大频谱效率,一般取载波间最小间隔等于符号周期的倒数。 OFDM允许各载波间频率互相混叠,采用了基于载波频率正交的IFFT/FFT调制,直接在基带处理。1971年,Weinstein和Ebert将DFT引入到并行传输系统的调制解调部分。应用时去掉了频分复用所需要的子载波振荡器组、解调部分的带通滤波器组,并且可以利用FFT的专用器件实现全数字化的调制解调过程。 OFDM技术具有频谱利用率高、抗多径干扰能力强、易于实现等优点,尤其适于多径效应严重的宽带传输系统,是一门具有发展前景、非常适合电力线高速数字通信的新兴技术。

  2 电力线载波通信系统结构

  Homeplug是工业界第一个电力线家庭网络标准。系统参考Homeplug采用的频谱范围4.5MHz~21MHz,并在Homeplug物理参数的基础上确定本系统参数为:

  采样频率fs=1/T = 15MHz

  数据符号时间Td = 256×T=17.07μs

  循环前缀时间Tcp = 172×T=11.47μs

  OFDM符号时间Ts = 428×T=28.5μs

  数据子载波数为256

  子载波间隔Δf=1/Td=0.05858MHz

  总子载波占用带宽 N×Δf=15MHz

  由于加入了11.47μs的循环前缀,系统可以消除11.47μs以内的回波干扰。但是同时也付出频带利用率仅0.59B/Hz和损失功率2.23dB的代价。考虑到电力线恶劣的通信环境,付出的代价是值得的。

  电力线高速通信系统的系统结构如图1所示。输入数据在OFDM信号调制部分依次经过串/并变换、IFFT、加入循环前缀、并/串变换后,输出调制后的信号,其频带范围为0~15MHz、数据速率为8.97MB。经过调制的信号经过数/模变换和上变频后,通过系统耦合部分进入电力线。 电力线上的信号通过系统耦合部分,输出的信号通过下变频、模/数变换后输入给OFDM信号解调部分。在经过串/并变换、去除循环前缀、FFT、并/串变换后,输出串行数据流。

          

  3 OFDM调制解调器的硬件实现

  基于TMS320C6201的OFDM调制解调器的硬件实现分别如图2和图3所示。PCI总线实现OFDM系统和计算机之间的通信。S5933是32bit PCI控制器。FPGA是系统的控制核心,系统的逻辑控制信号及时钟由FPGA提供。DSP部分为系统的核心,完成OFDM的调制与解调。 PCI总线是宽度为32bits或64bits的地址数据复用线,支持猝发传输,数据率为132Mbps,可满足高速数据要求。PCI总线能自动配置参数,定义配置空间,使设备具备自动配置功能,支持即插即用,采用多路复用技术,支持多处理器64位寻址、5V和3.3V环境。其独特的同步操作及对总线主控功能,可确保CPU能与总线同步操作,而无需等待总线完成任务。

           

  S5933是AMCC(Applied Micro Circuits Corporation)公司开发的32bit PCI控制器,具备强大、灵活的PCI接口功能,适用于高速数据传输场合。S5933芯片的特点是符合PCI2.1规范,支持PCI主、从两种工作方式,支持多种数据传输方式,适用于不同的数据传输场合,支持PCI全速传输,提供8/16/32bit的Add-On用户总线,有高低字节顺序调整功能,支持穿行和并行的BOOT/POST码功能,160脚PQFP封装。

  DSP部分选用TI公司的TMS320C6201。TMS320C6201有32位的外部存储接口EMIF,为CPU访问外围设备提供了无缝接口。为了便于多信道数字信号处理,TMS320C6201配备了多信道带缓冲能力的串口McBSP。McBSP的功能非常强大,除具有一般DSP串口功能之外,还可以支持T1/E1、ST-BUS、IOM2、SPI、IIS等不同标准。TMS32C6201提供的16位主机接口(HPI)使得主机设备可以直接访问DSP的存储空间。通过内部或外部存储空间,主机可以与DSP交换信息,也可以利用HPI直接访问映射进存储空间的外围设备。TMS320C6201的DMA控制器有四个独立的可编程通道,可以同时进行四种不同的DMA操作。

  4 OFDM在DSP上的软件实现

  调制部分的子程序被系统调用前,发送的数据已装入数据存储器。子程序被调用时,数据区的首地址以及长度被作为入口参数传递给子程序。程序执行时首先进行一系列的配置工作,如配置DSP片内外设以及数模转换器的各种参数等。之后,串口中断产生,中断服务程序自动依次读取发送存储器中的内容,经串口输出给数模转换器。然后程序从数据存储区读取一帧数据,并行放入IFFT工作区的相应位置,随后进行IFFT以及加入循环前缀(即复制数据的后若干位插入到数据的前段)。所得数据存入发送存储器以便中断服务程序将其输出。

  解调部分的程序首先执行DSP片内外设以及模数转换器的配置,然后开串行口,接收中断,使接收中断程序接收来自模数转换器的采样数据,并将采样数据依次存入接收存储器。每得到一帧数据,程序首先去除循环前缀(即删去数据的前若干位),然后对去除循环前缀后的数据进行FFT变换。

5 FFT在TMS320C6201上的优化算法

  表1给出256点Radix2FFT和Radix4FFT在TMS320C6201上所需的指令周期,以及在不同的工作频率下完成FFT所需的时间。 由表1可以看出,在TMS320C6201上采用Raidx4算法比采用Radix2算法更加高效。并且,为了满足系统需求,即在17.07μs之内完成256个复数点的FFT运算,TMS320C6201必须采用200MHz的工作频率。

         

  TMS320C6201的数据通路和流水线工作方式是对算法进行优化从而获得高性能的基础。TMS320C6201有两个可以进行数据处理的数据通路A和B,每个通路有4个功能单元(.L.S.M.D)和一个包括16个32位寄存器的寄存器组。功能单元执行逻辑、位移、乘法、加法和数据寻址等操作。两个数据寻址单元(.D1和.D2)专门负责寄存器组和存储器之间的数据传递。在同一时刻,这些功能单元能够并行地执行多条指令。TMS320C6201对任何指令的操作都能分为几个子操作,每个子操作由不同单元完成。对每个单元来说,每个时钟周期可进入一条新指令,这样在不同周期内,不同单元可以处理不同的指令,这种工作方式称?quot;流水线工作方式。TMS320C6201的特殊结构,可使8条指令同时通过流水线的每个节拍,从而大大提高了机器的吞吐量。

  为使代码达到最大效率,程序将尽可能将指令安排为并行执行。为使指令并行操作,程序确定指令间的相关性,即一条指令必须发生在另一条指令之后。根据TMS320C6201的数据通路和流水线工作方式,在此给出一种高效实现16点Radix4FFT的方法。其基本思想是分解传统的FFT蝶型算法循环体,将其分别展开在A、B通路内计算两个FFT蝶型算法。每个蝶型算法分别只分配自己这一侧的寄存器组和功能单元。这样在循环体内两个蝶型算法是完全不相关的,能够并行执行。下面给出基于C.S.Burrus和T.W.Parks的Radix4FFT算法的优化算法的代码实现。

void radix4(int n,short x[], short w[])
{
int n1,n2,ie,wa1,wa2,wa3, wb1, wb2,wb3,ia0,ia1,ia2,ia3,ib0,ib1,ib2,ib3,j,k;
short ta,tb,ra1,ra2, rb1,rb2,sa1,sa2,sb1,sb2,coa1,coa2,coa3,cob1,cob2,cob3,sia1,sia2,sia3,sib1,sib2,sib3;
n2=n;
ie=1;
for(k=n;k>1;k>>=2)
{ //number of stage
n1=n2;
n2>>=2; // distance between input datas
wa1=0;
for(j=0;j<n2;j+=2){//number of butterfies perstage
wb1=wa1+ie;
wa2=wa1+wa1;


wb2=wb1+wb1; //since heremost of the folow-ering two instructions are parallel
wa3=wa2+wa1;
wb3=wb2+wb1;
coa1=w[wa1*2+1];
cob1=w[wb1*2+1];
sia1=w[wa1*2];
sib1=w[wb1*2];
coa2=w[wa2*2+1];
cob2=w[wb2*2+1];
sia2=w[wa2*2];
sib2=w[wb2*2];
coa3=w[wa3*2+1];
cob3=w[wb3*2+1];
sia3=w[wa3*2];
sib3=w[wb3*2];
wa1=wb1+ie;
for(ia0=j,ib0=j+1;ia0<n;ia0+=n1,ib0+=n1) 
{//loop of two butterflies caculation
ia1=ia0+n2;
ib1=ib0+n2;
ia2=ia1+n2;
ib2=ib1+n2;
ia3=ia2+n2;
ib3=ib2+n2;
ra1=x[2*ia0]+x[2*ia2];
rb1=x[2*ib0]+x[2*ib2];
ra1=x[2*ia0]-x[2*ia2];
rb1=x[2*ib0]-x[2*ib2];
ta=x[2*ia1]+x[2*ia3];
tb=x[2*ib1]+x[2*ib3];
x[2*ia0]=ra1+ta; // x[2*ia0]
x[2*ib0]=rb1+tb; // x[2*ia0]
ra1=ra1-ta;
rb1=rb1-tb;
sa1=x[2*ia0+1]+x[2*ia2+1];
sb1=x[2*ib0+1]+x[2*ib2+1];
sa2=x[2*ia0+1]-x[2*ia2+1];
sb2=x[2*ib0+1]-x[2*ib2+1];
ta=x[2*ia1+1]+x[2*ia3+1];
tb=x[2*ib1+1]+x[2*ib3+1];
x[2*ia0+1]=sa1+ta;
x[2*ib0+1]=sb1+tb;
sa1=sa1-ta;
sb1=sb1-tb;
x[2*ia2]=(ra1*coa2+sa1*sia2)>>15;
x[2*ib2]=(rb1*cob2+sb2*sib2)>>15;
x[2*ia2+1]=(sa1*coa2-ra1*sia2)>>15;
x[2*ib2+1]=(sb1*cob2-rb1*sib2)>>15;
ta=x[2*ia1+1]-x[2*ia3+1];
ra1=ra2+ta;
rb1=rb2+tb;
ra2=ra2-ta;
rb2=rb2-tb;
ta=x[2*ia1]-x[2*ia3];
tb=x[2*ib1]-x[2*ib3];
sa1=sa2-ta;
sb1=sb2-tb;
sa2=sa2+ta;
sb2=sb2+tb;
x[2*ia1]=(ra1*coa1+sa1*sia1) >>15;
x[2*ib1]=(rb1*cob1+sb1*sib1) >>15;
x[2*ia1+1]=(sa1*coa1-ra1*sia1)>>15;
x[2*ib1+1]=(sb1*cob1-rb1*sib1)>>15;
x[2*ia3]=(ra2*coa3+sa2*sia3) >>15;
x[2*ib3]=(rb2*cob3+sb2*sib3) >>15;
x[2*ia3+1]=(sa2*coa3-ra2*sia3)>>15;
x[2*ib3+1]=(sb2*cob3-rb2*sib3)>>15;
}
}
ie <<=2
}
}

关键字:载波  电力线  解调 引用地址:基于DSP的电力线载波OFDM调制解调器

上一篇:ADSP2189M在船舶自动识别系统开发中的应用
下一篇:基于DSP的指纹识别系统设计

推荐阅读最新更新时间:2024-05-13 18:13

ISDB-T调谐-解调SoC方案 低成本电视接收【迪康】
固定及移动数字电视芯片领先提供商法国迪康公司,日前于国际集成电路研讨会暨展览会上(IIC-China)发布了最新的调谐-解调片上系统DIB8096P(SoC)方案。这款芯片支持ISDB-T full-seg标准,为固定接收装置提供高性能数字电视方案,并可以极低的成本集成到机顶盒、电视机及PCTV中。随着数字电视在南美地区的发展, ISDB-T被巴西,阿根廷等越来越多的南美国家采用运营。大规模需求的趋势也将在未来几年进一步延续。 随着DIB8096GP在过去两年被广泛使用,出货量已超过百万片。DIB8096P这款新型SoC芯片为市场提供了更低成本,更高性价比的产品,该芯片为64 引脚, 9x9mm QFN封装,专为发展迅速
[家用电子]
ISDB-T调谐-<font color='red'>解调</font>SoC方案 低成本电视接收【迪康】
电力线MODEM芯片ST7536
摘 要: 欧洲ST公司的ST7536是一个半双工、同步FSK调制解调器芯片。它专为低压电力线传输而设计,较好地克服了低压电力线载波传输中的技术问题。本文详细介绍ST7536的原理及具体应用示例。 关键词: 低压电力线MODEMST7536电力线接口   随着国家电力公司“一户一表、抄表到户”用电管理模式的推广和普及,利用220V低压电力线传输信息的载波集抄系统产品应运而生。这样电力载波技术成为抄表系统的关键。当前国内主要应用的是FSK电力线载波调制技术。   低压电力线是为传输50Hz的工频电能而铺设的。由于不是为通信铺设的,故其特
[应用]
基于载波移相的级联多电平并网逆变器研究
1 引言     随着人们对新能源发电的重视,并网逆变器的研究备受关注。传统的全桥逆变器应用于高压大功率场合时,常采用功率器件串并联的方式来实现高压大电流输出,但该方法要求串并联的功率器件同时关断和开通,在实际设计时较难实现。也可采用低压小功率逆变器通过多重化技术和升压变压器实现高压大功率输出,但这样会导致系统体积大,成本高,可靠性下降,能量传输效率下降。采用级联多电平技术能使低压功率器件应用于高压大功率场合,输出电压足够高,无需升压变压器而直接实现高压大功率输出。在此将载波移相技术应用于H桥级联多电平拓扑结构,与传统的PWM控制策略相比,能在较低的开关频率下实现高的等效开关频率,具有谐波特性较好和开关损耗低的特点,特别适用于多电平
[电源管理]
基于<font color='red'>载波</font>移相的级联多电平并网逆变器研究
用于手机电视终端的QAM解调器设计
   l 引言   在实际通信信道上传输数字信号时,由于信道传输特性不理想及加性噪声的影响,接收端所收到的数字信号不可避免地会发生错误。为了在一定的信噪比范围内获得较好的误码率指标,首先要合理设计基带信号,选择调制解调方式,采用时域、频域均衡等技术使误码率尽可能降低。在通信系统中常用的调制方法一般为QPSK和M阶QAM调制(M=4,8,16,32,64,256…)。对QPSK调制来说,调制点的幅度是相同的,只是相位不同,解调时可不考虑信噪比和衰落幅度的影响。对QAM调制来说,调制点的幅度和相位可各不相同,这时要求准确了解信噪比和衰落情况,因此要与信道估计结合起来考虑。在DVB-S,DVB-T,DVB-H,802.16等OFDM系统
[应用]
基于PL2101的单片机低压电力线载波通信接口扩展
早期的低压电力线载波通信芯片的接口电路相对复杂、抗干扰能力差,且多为国外产品,性价比低,因此,单片机系统较少采用低压电力线载波通信。随着通信技术的发展,新型低压电力线载波通信接口芯片解决了以上缺点,使得单片机系统采用低压电力线载波通信变得简单易用。 PL2101简介 PL2101采用二相相移键控,载波频率120KHz,带宽15KHz,传输速率500bps。它由单一的+5V电源供电,与单片机的接口简单,外围模拟发射/接收电路也较简单,工作时无需外接模拟混频器。PL2101内置有5种实用的功能电路:时钟电路、32 Bytes SRAM、电压监测、看门狗定时器及复位电路。其中,时钟与SRAM在主电源掉电后可由3V备用电池供电继续工作。
[单片机]
智能电表——电源管理及电力线通信
培训教材主要介绍电源管理和建议的方案,以及电力线通信方案。
[工业控制]
联发科技推出多模多频LTE调制解调器平台MT6290
    2014年1月6日,联发科技股份有限公司 (MediaTek, Inc.) 宣布推出多模多频LTE调制解调器平台-MT6290。联发科技MT6290 LTE modem支持LTE Release 9 Category 4版本,可提供上、下行分别高达150Mbit/s与50Mbit/s的数据传输速率。除了能同时支持FDD-LTE和TD- LTE, MT6290亦支持DCDC-HSPA + ,TD-SCDMA, EDGE和GSM / GPRS的语音及数据通讯,其多模稳定兼容性可确保基于该平台的终端产品在全球各地无缝隙衔接漫游、畅行无阻。MT6290 LTE modem可与联发科技现有解决方案兼容,包括最新MT6592真八核智能手
[手机便携]
基于CATV的智能校园广播/考试系统的设计
  传统的广播系统,一般需要由人工定时操作,且只能实现一路广播,功能少,传统的打铃设备,音源单一,声音刺耳,随着学校教学改革的不断深入,这些电教设备已不能满足学校的要求和发展,根据学校的需求,笔者利用电脑多媒体技术和单片机技术,结合CATV系统设计出了智能校园广播/考试系统,该系统不仅可以实现多路调频广播,而且可以寻址广播,控制校园任一广播终端的功能操作,如广播开关、声音调节和频道切换等,同时广播终端也可以对自己的广播功能进行操作,其可以通过遥控电脑进行全自动定时广播,实现打铃、课间操、课间音乐、年级语言考试等功能。因此,该系统是学校现代教育“三网”工程的一个较佳选择。 1 系统组成和各部分功能 智能校园广播/考试系统的组成如
[工业控制]
小广播
热门活动
换一批
更多
最新应用文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved