基于FPGA的雷达脉冲压缩系统设计

发布者:星辰耀眼最新更新时间:2007-01-12 来源: 今日电子关键字:调制  线性  调频  相位 手机看文章 扫描二维码
随时随地手机看文章
脉冲压缩技术是指对雷达发射的宽脉冲信号进行调制(如线性调频、非线性调频、相位编码),并在接收端对回波宽脉冲信号进行脉冲压缩处理后得到窄脉冲的实现过程。脉冲压缩有效地解决了雷达作用距离与距离分辨率之间的矛盾,可以在保证雷达在一定作用距离下提高距离分辨率。

线性调频信号的脉冲压缩

脉冲压缩的过程是通过对接收信号s(t)与匹配滤波器的脉冲响应h(t)求卷积的方法实现的。而处理数字信号时,脉压过程是通过对回波序列s(n)与匹配滤波器的脉冲响应序列h(n)求卷积来实现的。匹配滤波器的输出为:
(1)

依据式(1)的实现方法叫做时域相关法。根据傅里叶变换理论,时域卷积等效于频域相乘,因此,式(1)可以采用快速傅里叶变换(FFT)及反变换(IFFT)在频域内实现,称为频域快速卷积法。

用频域方法实现数字脉压,其基本原理是先对外部采样信号进行快速傅里叶变换(FFT)以求得回波信号频谱S(w),再将S(w)与匹配滤波器频谱H(w)进行乘积运算,最后对乘积结果进行快速傅里叶逆变换(IFFT)得到脉压结果Y(n),用公式表示为

(2)

频域快速卷积法的原理如图1所示,存储器中存储的是匹配滤波器传递函数H(k)。

图1 频域脉冲压缩原理框图

依据匹配滤波理论,数字匹配滤波器的脉冲响应h(n)及传递函数H(k)为

h(n)=s1(-n),H(k)=s1(k) (3)

其中, s(n)为雷达发射信号序列;S(k)为信号序列频谱。

数字脉冲压缩系统

1 系统构成和硬件设计

本系统是单脉冲雷达信号处理机的一部分,由于单脉冲雷达所需要处理的距离、方位/俯仰两路信号来自同一发射信号源的目标反射回波,要求对两路信号进行同时、同频ADC采样和完全相同算法的脉冲压缩处理。针对这一特点,雷达数字脉冲压缩系统将相同的脉冲压缩处理功能移至两片FPGA芯片内。由于对雷达体积、重量、功耗等指标有特殊要求,本系统采用二个通道的脉冲压缩处理硬件结构,即方位和俯仰两路信号分时共用一个脉冲压缩通道。雷达信号处理分系统硬件结构如图2所示。

图2 雷达信号处理分机硬件结构图


系统中,数据采样后分为和路和差路(包括航向差和俯仰差)两组数据,分别输入两片FPGA单独进行脉冲压缩计算,脉冲压缩后再送入后端的DSP做谱分析,以确定目标的距离、速度、方位等情况。由框图中我们看到,FPGA不仅要对数据做脉冲压缩计算,还承担了对输入数据处理和读写状态寄存器的任务。状态寄存器存储了脉冲压缩计算的控制参数,由后端的DSP根据分析的结果对其做相应的控制。

2 软件设计

根据位内运算结构的特点,针对芯片内嵌的块RAM资源丰富的优势,脉冲压缩系统采用两片存储器的乒乓操作,在FFT的每一级运算中使一片双口RAM的两个端口同时处于读或写状态,达到每个时钟周期输出两个操作数的需要。而且,数据经蝶算单元运算结束后以相同的地址写入另一片双口RAM,节省了写地址生成的时间,为设计高速的FFT系统提供了可能。

如图3所示,采用两片中间级RAM:RAMA和RAMB,用它们来完成乒乓操作。地址产生模块生成的读地址同时与中间级的两片RAM相连,控制相应的RAM读取所需的操作数,操作数经蝶算模块运算后以同址方式写入到另一片RAM的两个端口。RAM的读写由地址产生模块生成的写使能信号控制,处于读状态的RAM写使能置零,而另一片的写使能端置高,处于写状态。而且,RAM被设置为写状态时输出端口不输出,以减少RAM的读取次数。这样,输入RAM变为输出RAM,输出RAM变为输入RAM,如此反复,直到FFT最后一级。

图3 脉冲压缩系统的结构框图

FFT的每一级运算结束后,两块RAM功能互换,写使能变反,运算结束。RAM的每次输出数据需经过数据选择模块(datamux),该模块由地址产生模块输出的当前级数信号Stage控制。本系统采用三种FFT模式:1024点、512点和256点,均采用同一旋转因子ROM。根据FFT点数的不同,ROM的读地址expaddr做相应的调整,这样的设计也在很大程度上节省了芯片内的块RAM资源。

3 系统性能

针对本雷达信号处理机对实时性和高精度的要求,我们设计研制出具有自主知识产权的高性能脉冲压缩处理系统,该处理系统具有以下特点:

  A 处理系统内部采用24位自定制浮点数据格式,能够兼顾处理系统的资源占用和处理精度。数据输入为定点数据格式,输出为标准32位浮点数据格式。

  B 处理系统工作时,需要依次完成FFT运算、复数乘法运算和IFFT运算。在进行FFT和IFFT运算时,蝶形运算/乘法运算单元完成蝶形运算操作;在进行复数乘法运算时,该单元完成乘法操作。这两种操作在实际工程中分时实现,并且共享浮点数规格化处理硬件电路。

  C 处理系统中进行FFT/IFFT运算的长度N(N=2048、1024或512)由雷达信号处理机的控制信号决定。

  D 内置三组数据存储器(输入数据RAM、同址运算RAM、输出数据RAM),保证处理系统能全速运行,提高该处理系统的处理能力。

  E 旋转因子(N=1024时的FFT运算旋转因子)以上电初值的形式存储在FPGA片内存储器中。当N=512、256时,其旋转因子从N=1024的旋转因子中抽取得到。N点IFFT的旋转因子由N点FFT的旋转因子取共扼得到。

实验结果

本雷达信号处理机存在三组时间—带宽指标,分别对其进行理论仿真和实际输出结果对照,其结果如图4、图5和图6所示。

图4 1024点脉冲压缩状态FPGA计算结果与MATLAB计算结果对比图

图5 512点脉冲压缩状态FPGA计算结果与MATLAB计算结果对比图

图6 256点脉冲压缩状态FPGA计算结果与MATLAB计算结果对比图


图4至图6分别对应时宽为60μs、20μs、6μs,带宽均为5M的线性调频信号。其中,左图对应MATLAB的计算结果,右图为FPGA芯片的输出结果。可以看到,FPGA芯片的输出结果和MATLAB仿真结果吻合。经测试验证结果良好,最大误差不超过-76db,在内部时钟频率80MHz条件下,完成1024点FFT 运行时间为146μs ,满足了雷达系统实时处理要求,达到了满意的效果。

关键字:调制  线性  调频  相位 引用地址:基于FPGA的雷达脉冲压缩系统设计

上一篇:WCDMA速率适配算法的FPGA实现
下一篇:利用Virtex-5 FPGA实现更高性能的方法

推荐阅读最新更新时间:2024-05-13 18:16

40瓦调频广播放大器原理及电路
40瓦调频广播放大器原理及电路 此放大器是依据‘为调频广播设计的40瓦宽频VHF无线电功率放大器’译而成。 电路的指标和特点: 40W 输出功率 88-108 MHz 频率范围 20dB 增益 +28V 3A DC电源 效率高(70%,MOSFET AB类放大器) 元件少 输出低通滤波器 (LPF) 电路图 元件清单 编号 元件参数及描述 FEC 型号 (注1) 数量 C1, C2, C4 5.5 - 50p 小型瓷介微调电容 148-161 3 C3 100p 50V 瓷介电容 (NP0) 896-457 1 C5, C6, C7 100n
[模拟电子]
40瓦<font color='red'>调频</font>广播放大器原理及电路
替代非稳压线性变压器电路
替代非稳压线性变压器电路: 2W, 6V, 0.33A, 90–265 VAC输入的反激式电源电路
[电源管理]
替代非稳压<font color='red'>线性</font>变压器电路
Laird Connectivity 调制解调器 将蓝牙5与蜂窝IoT应用完美结合
专注于引入新品并提供海量库存的电子元器件分销商贸泽电子 (Mouser Electronics) 即日起开始分销 Laird Connectivity的全新Pinnacle 100蜂窝调制解调器。此多功能无线调制解调器将蓝牙5技术的优点与低功耗蜂窝LTE连接技术结合在一个全集成解决方案中。Pinnacle 100调制解调器通过了无线电监管、蜂窝和网络运营商的全面认证,是在物联网 (IoT) 应用边缘运行的电池供电设备的理想低功耗解决方案。此调制解调器还适用于互联家居、预测性维护、零售、安防和环境监测应用。 贸泽电子备货的Laird Connectivity Pinnacle 100蜂窝调制解调器具有板载Arm® C
[物联网]
Laird Connectivity <font color='red'>调制</font>解调器 将蓝牙5与蜂窝IoT应用完美结合
非对称H桥五电平逆变器及其通用调制策略
  1 引言   混合多电平逆变器的功率开关承受的电压应力不同,因此同一拓扑中可以采用不同的功率器件,充分利用了功率开关各自的优点。非对称h桥是混合多电平逆变器中最基本、最典型的一类拓扑,其半桥的功率开关可以分别工作在基频和高频pwm方式,与传统多电平逆变器相比,在输出相同电平数的情况下,减少了功率器件,降低了开关损耗[1,2]。本文首先对非对称h桥五电平逆变器进行了分析,利用其结构特点,提出一种通用的调制策略。最后以电容箝位型非对称h桥拓扑为实验平台,对所提调制策略进行了实验验证。   2 非对称h桥五电平逆变器   非对称h桥拓扑是混合多电平拓扑中最基本、最典型的一类拓扑,其半桥的功率开关可以分别工作在基频和高频p
[电源管理]
非对称H桥五电平逆变器及其通用<font color='red'>调制</font>策略
线性稳压器
线性稳压器 低成本低噪音低静态电流的配件 线性稳压器(Linear Regulator)使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。其产品均采用小型封装,具有出色的性能,并且提供热过载保护、安全限流等增值特性,关断模式还能大幅降低功耗。 概念 线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指 稳压器 将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的 LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP.这种晶体管允许饱
[电源管理]
基于MSP430F149的RLC、频率及相位差测量仪的设计
0 引言     目前,要在实验室中完成对RLC、频率及相位差的测量,实际需要用几个仪表,如RLC表、频率计和相位仪,这给实际使用带来诸多不便。而且现在常用的仪表一般还是传统的模拟式仪表,漂移大,程控性能不好,而有些仪表功能过于单一,不能满足实际需求。为此,本文考虑到实际的科研实验需要,给出了一种可同时测量RLC、频率及相位差的测量仪的设计方法。 1 系统组成与硬件电路设计 1.1 系统组成     该仪器包括信号产生与接收模块、信号的放大整形滤波处理模块、单片机中央处理器、显示模块LCD12864和外部按键控制模块等几个部分,其系统组成结构框图如图1所示。     本系统以单片机MSP430F149为处理器,主要用于整个系
[测试测量]
基于MSP430F149的RLC、频率及<font color='red'>相位</font>差测量仪的设计
全桥逆变器双Buck型调制的研究
  全桥逆变器双Buck型调制,不增加拓扑结构复杂程度,保留了双降压半桥逆变器(DBHBI)无桥臂直通的优点,克服了直流电压利用率低等缺点。采用电流瞬时值反馈SPWM控制策略,给出了该双Buck型调制工作的原理,分析了其实现方法,通过仿真和实验验证了系统的正确性。   1 引言   随着可再生能源在世界范围内的发展,逆变器系统作为新能源与电网的接口设备越来越受到关注,提高开关频率和实现高效率是目前研究的主要方向。全桥双Buck型控制模式在不增加拓扑结构复杂程度基础上,克服了传统桥式逆变器存在的桥臂直通问题,避免了加入死区造成输出波形的畸变现象,具有高可靠性。工作在单极性调制方式下,输出波形的谐波含量较小。   2 并网逆变器
[电源管理]
全桥逆变器双Buck型<font color='red'>调制</font>的研究
脉宽调制功率放大器SA03在电机控制中的应用
    摘要: SA03是由美国APEX公司生产的高性能脉宽调制功率放大器。文中介绍了SA03的基本特性和应用注意事项,给出了SA03的直流电机双环调速系统中的应用系统框图。     关键词: 脉宽调制 滤波 旁路 控制 SA03 1 概述 脉宽调制功率放大器(PWM)通常工作在开、关状态,而且其功耗低、效率高、频带宽、线性好。在电机控制系统中,干摩擦是影响系统性能的一个主要因素,它一方面会造成系统静态误差,另一方面,在系统低速运行时还会引起跳动。在采用PWM控制时,电机一般处于微振状态,这样就起到了“动力润滑”的作用,从而减小了摩擦力矩以及静、动摩擦力矩之差,因此,该微振是避免产生低速跳动的重要途径,有利
[工业控制]
小广播
最新应用文章
换一换 更多 相关热搜器件
更多每日新闻

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved