利用频域时钟抖动分析加快设计验证过程

发布者:静静思索最新更新时间:2007-06-19 来源: 安捷伦科技关键字:串行  传输  接收  信号 手机看文章 扫描二维码
随时随地手机看文章

简介

随着数据速率的提高,时钟抖动分析的需求也在与日俱增。在高速串行数据链路中,时钟抖动会影响发射机、传输线和接收机的数据抖动。保证时钟质量的测量也在不断发展。目前的重点是针对比特误码率,在时钟性能和系统性能之间建立直接联系。我们将探讨参考时钟的作用和时钟抖动对数据抖动的影响,并讨论在E5052B信号源分析仪(SSA)上运行的Agilent E5001A精确时钟抖动分析应用软件所配备的全新测量技术。该应用软件提供了前所未有的强大能力,可以对随机抖动(RJ)和周期抖动(PJ)分量超低RJ测量和实时抖动频谱分析,使您能够提高设计质量。我们还将对新解决方案的实时测量功能进行讨论,这一功能能够加快设计验证过程。

参考时钟在高速串行应用中的作用

图1是参考时钟的主要分量。发射机通常将一组速率较低的并行信号转换成串行数据流。信号经过一条包括多个背板和电缆的传输通道进行传送。接收机通常会解释输入的串行数据,从中分离出时钟,再把串行数据重新转换成并行数据流。在许多诸如此类的说明中,参考时钟更多地被视为一种分量但不是主要分量,而在高速串行数据系统中,我们必须承认参考时钟是一种主要分量。通常,参考时钟的振荡速率远远低于数据速率,但它会在发射机中成倍增长。发射机使用参考时钟来确定串行数据流中的逻辑变换定时。发射的数据中包括参考时钟的特征。在接收机中可能会出现两种不同的情况。如果未分配参考时钟,则接收机会利用锁相环(PLL)从数据流中还原时钟――并利用该时钟定位采样时间点。如果已分配参考时钟,则接收机会同时使用数据信号和参考时钟来定位采样点。 

时钟抖动对发射机数据抖动的影响

参考时钟是最终的系统定时源。它为发射机、已分配和未分配的时钟系统提供时基,而接收机的时钟恢复电路可以重现参考时钟特征。现在我们将探讨时钟抖动如何在系统发射机中进行传输。

发射机必须用适当的因数乘以参考时钟获得数据速率,才能确定逻辑变换定时。例如,对于100 MHz参考时钟和5 Gb/s输出信号,发射机将用PLL给参考时钟乘以因数50。PLL乘法器不仅放大时钟抖动,还引入其自身的抖动,主要是PLL压控振荡器(VCO)的RJ。频率乘以因数n的结果是相位噪声功率载波比乘以n2,所以抖动迅速变大。 

发射机中的PLL乘法器具有一定的频率响应,通常是如图3所示的二阶响应。非均匀频率响应会产生一个值得注意的问题:时钟抖动实际上有什么影响?如果PLL非常出色且带宽为零,那么它将过滤掉所有的时钟抖动,而为发射机提供无抖动时基。当然,零带宽意味着无限锁定时间,所以我们不得不综合考虑,但是PLL带宽越窄,参考时钟加入数据中的抖动就越小。确定时钟是否能在系统中正常工作且符合预期的BER要求,需要对抖动频谱进行详细测试。   

真实的抖动源

如果观察实际环境中的高速数字电路,您会发现许多抖动源,如图4所示。跟我们前面讨论的一样,时钟信号通常分配给多个IC,时钟频率可能进行乘法和/或除法运算。假设来自晶体振荡器的参考时钟具有较低的抖动,因为IC带来的附加噪声或其他设备产生的干扰,所以经过乘法或除法运算的输出时钟也可能不是非常干净。

一个主要污染源就是开关电源的噪声。开关频率一般为100 kHz到1 MHz。开关电源噪声可能会注入时钟信号线路,它在左下图中显示为PJ。

其他周期抖动分量的来源可能是数据或时钟线路的干扰,经互调后可能位于时钟线上,也显示为PJ分量。只要PJ分量表现的远离时钟频率,它就极有可能插入带通滤波器(或低通滤波器)来消除这些抖动。然而,问题是周期抖动在什么时间接近时钟频率,因为高频高Q滤波器很难得到。参考时钟的RJ也一样,时钟除法器可能添加宽带噪声,这可能会使输出时钟信号的RJ增加。

要诊断各种问题,设计人员必须表征有关电路物理布局和/或工作环境下的时钟抖动。
 

通过相位噪声测量技术表征时钟抖动

全面分析时钟信号要求达到飞秒级精度,只有相位噪声测量技术才能达到这种精度。相位噪声分析提供两种主要测量:Sj(fj)和j(t),它们根据相位噪声测量带宽限制收集时钟的所有相位信息。

在相位噪声分析仪上分析RJ可以完成两个重要目标。首先,通过集成RJ频谱,可以提取预定带宽中的相应RJ高斯分布宽度。其次,通过分析Sj(fj)的幂级数行为确定RJ的主要原因。(图5)

在相位噪声频谱中可以看到PJ分量的杂散。所以PJ频率知识对于诊断问题非常有帮助。参考每个PJ频率的PJ rms也能帮您了解每个PJ分量对总体时钟抖动的影响,查看去除主要PJ分量之后总体抖动的变化。(图6)

通过先进的体系结构进行实时抖动测量

与传统的抖动测量模式不同,带有E5001A软件的E5052B SSA可以对相位噪声测量进行实时抖动分析。该仪器使用PLL提供参考源。它能够自动检测时钟频率,在几毫秒内把内置参考源自动调谐为时钟频率,测量相位检波器保持PLL所产生的噪声信号。它在250 MSa/s ADC上捕获噪声信号,从而可以进行100 MHz抖动带宽测量。该测量涵盖OC-192抖动分析范围。实时FFT可以获得频域数据,并能显著提高测量速度。例如,1 kHz到100 MHz带宽的测量每次只需0.3秒。 
 

利用交叉关联技术获得出色的抖动本底噪声

E5052B抖动测量分辨率和本底噪声非常低,通常10Gbps速率时的RJ本底噪声仅为几飞秒。由于ADC的动态范围有限,且其内部参考时基的剩余抖动较大,高性能(实时或采样)示波器的抖动本底噪声通常在一百飞秒以上。E5052B通过检测基带(其中较大的载波信号已删除)的相位噪声来保持宽动态范围。E5052B利用两个独立的内部测量通道之间的独特交叉关联技术,将抖动测量极限扩大到低于其内部时基的残余抖动。(参见图7)与目前的高性能示波器相比,E5052B利用这种交叉关联技术把抖动本底噪声降低了100倍到1,000倍。(图8)

实时仿真PLL响应

图9表示直接应用于时钟相位噪声信号的PLL响应功能的结果。您可以看到如何消除频谱的不同部分,使您可以分析与应用相关的抖动。E5052B对相位噪声测量的实时抖动分析功能可加快您的设计进程。E5052B SSA可以导入任何PLL响应函数,使您可以轻松快速地仿真设备到设备的PLL响应。 

总结

对于高速串行数据应用,时钟抖动分析的主要目的是确定参考时钟的抖动对系统比特误码率的影响。最精确的方法是对时钟应用发射机(和接收机)在最坏情况下的传递函数,并测量获得的时钟RJ和PJ。在E5052B上运行的E5001A精确时钟抖动分析软件改变了传统的抖动测量方式,它不仅能以飞秒级分辨率对时钟抖动进行全面分析,而且具有出色的易用性和实时抖动分析功能,可以帮助您加快设计验证过程。

关键字:串行  传输  接收  信号 引用地址:利用频域时钟抖动分析加快设计验证过程

上一篇:基于ARM的热敏电阻温度计的设计
下一篇:基于AT89S52的车载压实度检测仪设计

推荐阅读最新更新时间:2024-05-13 18:36

高压浮地信号测量应该怎么选示波器探头?
高压浮地信号测量是一项非常重要的测试工作,常常应用于电力系统、电气设备和高压场合。在进行高压浮地信号测量时,需要选取正确的示波器探头,以获得准确的测量结果。本文将介绍如何选取示波器探头,以及如何在实际操作中正确使用示波器探头。 首先,我们需要了解什么是高压浮地信号。高压浮地信号是指高压电气设备内部与外部之间的信号,通常指存在于高压设备绝缘表面上的电位差信号。由于高压设备通常处于高电压状态,因此其内部与外部之间的电位差极易引起飞火和人身伤害,因此需要采用高压浮地信号测量技术。 在进行高压浮地信号测量时,需要选取正确的示波器探头。示波器探头通常被设计成两类:差分探头和单端探头。差分探头是指两个探头共同接入被测试信号源,并且这两
[测试测量]
高压浮地<font color='red'>信号</font>测量应该怎么选示波器探头?
中兴通讯传输系统科技护航成都地铁一号线
保卫城市交通动脉的信息化之需 地铁作为一个城市的交通动脉,其重要性不言而喻。2009年年尾发生的上海地铁两车相撞事故,导致上海地铁全线瘫痪,数万名乘客滞留导致地铁拥挤不堪,造成巨大损失,也为我们再一次敲响了地铁安全管理的警钟。而地铁公安,作为保障地铁正常运营,维护乘客及地铁设施安全的守护者,配备一双能够随时洞悉一切的“千里眼”,把危机消灭在萌芽状态,是必要且必须的。从信息化要战斗力,成为地铁公安实现突破的重要途径。 综合以上需求,成都地铁一号线一期工程决定上马公安通信传输系统,经过多方考核,最终选择了由中兴通讯负责实施。传输系统是一个能承载语音、数据和图像的多业务平台,上马后可为地铁公安的视频监视、有线及网络
[网络通信]
中兴通讯<font color='red'>传输</font>系统科技护航成都地铁一号线
STM8S003F使用IO口模拟串口(二)接收数据
在上一篇文章中我们介绍了IO口模拟串口数据的发送,这一篇文章我们介绍IO口模拟串口数据的发送。同样的,我们没有使用库函数和中断,我们使用简单的定时来完成数据的接收。 1、IO口模拟串口接收数据的原理 同样的,我们将要接收的数据认为是10位(实际上,我们在接收数据之前必须搞清楚我们将要接收的是什么,否则我们需要在模拟串口程序中添加其他代码来进行检测)。 同样的,我们事先知道发送数据的波特率为:9600。 我选择的是STM8S003F的PD3引脚作为模拟串口的接收引脚。 思路是这样的,我们使用定时器定时,通过判断是否是起始位(通过低电平判断,因为没有发送数据应该是高电平),得到起始位了以后,延时一个数据位发送的时间(我
[单片机]
Vishay推出采用ChipLED封装的小尺寸SMD LED
宾夕法尼亚、MALVERN — 2017 年 6 月21 日 — 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出采用小尺寸表面贴装0603 ChipLED封装的新系列真绿色LED---VLMTG1400。VLMTG1400系列器件的尺寸为1.6mm x 0.8mm,高度只有0.55mm,使用了最新的超亮InGaN芯片技术,使发光强度达到2800mcd。 今天发布的这些器件贴装在PCB基板上,具有高亮度和小尺寸的优点,非常适合要求在艰苦环境中可靠工作的各种小型产品。LED使设计者在导航系统、手机、工业控制系统、交通信号灯和消息板的背光键盘、显示屏等应用中提高设计灵活性,实现
[电源管理]
Vishay推出采用ChipLED封装的小尺寸SMD LED
PIC16F877A与PC机串行通信C语言源程序
//*******串口通信程序********* //*******定义变量************* #include pic16f877.h #define unchar unsigned char #define uint unsigned int unchar RC_label;//标志位起始位为1结束位为0 unchar caiji_label;//采集帧格式标志位正确为1错误为0 unchar data RC ;//存储接收到的数据 unchar data TX1 ;//存储自身参数 unchar data TX2 ;//存储出错指示ERROR int RC_buff;// int i=0,j=0,k=0;/
[单片机]
弥合高速数据转换器连续波和调制信号测量之间的差异
我们一般使用连续波 (CW) 信号来描述高速模数转换器 (ADC) 和数模转换器 (DAC)。这样做的原因是:1)就 ADC 而言,CW 信号更易于通过 CW 生成器和窄带通滤波器无噪生成;2)就 DAC 而言,CW 信号更容易分析;3)它们具有许多标准参考测试,可在各种器件之间清楚地比较。然而,大多数现实系统都将高速数据转换器用于采样调制波形。弥合基于 CW 测量的各种规范和调制信号的系统要求之间存在的差异具有一定的挑战。 CW 信号和调制信号之间存在两种差异,会影响高速数据转换器的行为。首先,CW 信号没有带宽——能量被限定在某个单一频率;而调制信号有带宽,能量分布于某个频率范围。其中的一个结果便是 CW 信号失真在另一个频率引
[测试测量]
弥合高速数据转换器连续波和调制<font color='red'>信号</font>测量之间的差异
如何选择一台符合需求的信号转换器
在选择信号转换器之前,您需要知道以下几个问题。   1. 信号转换器来作什么?   根据您的使用环境( 工业、广 播、大学、特定市场等),您可能需要一些附 加的功能例如:缩放,远程控制,SDI输出,同步锁相,输出图象的大小和位 置的调整等。   2. 什么类型的电视信号输出可以与我的视频设备相连接?   对于您的选择来说输出信号类型是非常重要的。电视成象设备通常接受不同类型的电视信号,例如:复合视频,S端子,分量视频(YUV)以及RGB信号。   注 意:   信号储存质量在S端子(Y/C)和分量信号比较好;   复合视频信号经常使用于监视屏或低分辨率图象的成象上;   SDI是广播环境的最好选择。
[模拟电子]
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved