单向双端口SRAM的测试算法

发布者:SparkCrafter最新更新时间:2007-10-19 来源: 固体电子学研究与进展关键字:存储  地址  译码  检测 手机看文章 扫描二维码
随时随地手机看文章
引 言

单向双端口SRAM是一种专用的存储器,它具有独立的写地址总线和读地址总线,不仅可以实现单端口的读写,还可以对不同地址的存储单元进行同时读写操作,提高了SRAM的性能。本文分析了单向双端口SRAM的失效模式,并描述了相应的基于字的检测算法。

存储器模型

图1表示了3×3的单向双端口SRAM模块的结构示意图,输入为读地址总线、写地址总线和输入数据总线,输出为输出数据总线。每一个存储单元都有四个端口,分别是数据写入(BW),数据读出(BR),写地址端口(WA)和读地址端口(RA)。在这种结构中,同一列单元的数据写入端和读出端连到总线上,输出采用了线与的方式。对于字长大于1的存储器来说,读地址和写地址一次选中一行,一行中所有的存储单元 组成字,读写都是基于字的操作。由于读写总线分离,可以通过读地址和写地址选中不同的字,实现同时读写。

失效模型

存储器的失效表现为单元不能被正确地写入和读出,失效模型表示引起失效的原因。设计不当、制造工艺引入的缺陷和硅片上的点缺陷都会引起存储器的失效。失效使电路的结构发生变化,通过模拟分析出电路失效行为,上升到功能级,总结出功能失效模型。单向双端口SRAM的失效模型可以分为单元失效,单元耦合失效,地址译码失效,同时读写失效和复合失效。

单个存储单元失效

固定0/1失效(SAF),单元存储值固定为0/1。固定开路失效(SOF),单元不能被读写,由于输出线与,读出数据为固定值。转换失效(TF),单元存储值不能由0 变为1,或由1变为0。

存储单元间的失效

对一个单元的读写操作改变了另一单元存储值,称为耦合失效(CF),两个单元分别被称为耦合单元和被耦合单元。相邻单元,同一行和同一列单元更易于发生耦合失效。由于读写是基于字的操作,耦合失效又可以分为字间耦合失效和字内耦合失效。

地址译码失效

地址译码失效(AF)包括了四种情况:1. 对某一地址,没有单元被存取;2. 对某一单元,没有地址可以对其存取;3. 对某一地址,多个单元被同时存取;4. 对某一单元,同时被多个地址存取。由这四种失效子模式组合引起的失效可以等效成固定0/1

失效和单元耦合失效。

同时读写失效

由于同时读写操作的相互影响,导致写入或读出错误的值而引起的失效。

复合失效

多个耦合失效,或耦合失效和地址译码失效复合在一起。复合失效可以相互掩盖而可能通过检测,必须合理地选择测试算法,以小的测试复杂度,达到大的失效覆盖率。

单向双端口SRAM的检测算法

目前对存储器的检测算法主要基于功能级的失效模型,测试算法必须满足失效发生的条件,通过写入或读出测试向量激活失效,并通过读操作检测出来。当读出值与预期值不同时,可以判定存储器失效。

队列测试方法具有测试时间短、结构简单、易于用自检测电路实现而被普遍采用。它包含了一组测试元素,时间复杂度为O (n),n表示存储单元的容量。以MATS+法为例,表示方法为{ (Write0)m1;( read0,Write1)m2;( read1,Write0)m3},包括了3组测试元素M1、M2、M3,其中T ( read1,Write0)表示以地址递减的顺序对每一个单元进行读1和写0操作,总的时间复杂度为5n。

由于读写操作都是基于字的,因此采用基于字的检测方法,把失效检测划分成三部分,字间失效检测、字内失效检测和同时读写失效检 测。下面以3位字长的单向双端口存储器为例来说明测试算法。

字间失效检测

字间检测采用传统的队列测试算法,March C+算法覆盖了固定0/1失效,固定开路失效和转换失效,地址失效和字间耦合失效,基于字的MarchC+算法表示为:


时间复杂度为14B,B为存储器字的容量。

字内失效检测

字内检测针对字内各存储位之间的耦合失效,考虑字内任意一位会受到两侧相邻位的耦合,可以构造出图2中的状态图。图2覆盖了所有的状态和相邻位之间的耦合失效,圆圈表示相邻三位的状态,连线上的符号表示由状态转换引起的失效类型,以〈W1,W1:↓〉为例,表示了对两侧相邻位写入1时置中间位为0,则时写入111并读出可以检测这一失效。因此,对相邻三位执行下列操作序列,

Write000,Write111,read111,read111,Write000,read000,read000,
Write001,Write110,read110,read110,Write001,read001,read001,
Write010,Write101,read101,read101,Write010,read010,read010,
Write011,Write100,read100,read100,Write011,read011,read011,

可以检测出相邻位之间的耦合失效。在测试序列中包括了两次连续的读出,第一次读出检测由前一次写操作引起的失效,第二次读出检测由第一次读出引起的失效。

将上述的检测序列转化成队列测试的形式,得到如下的结果:

时间复杂度为35B,B为存储器字的容量。字内失效检测算法和字间失效检测算法包含了相同的测试元素,因此对两种算法进行合并,在失效覆盖率相同的情况下,减小测试的时间复杂度。可以得到如下结果:

时间复杂度为41B,B为存储器字的容量。

同时读写失效检测

单向双端口存储器允许同时读写不同单元。假定这种失效模型仅仅在相邻的字间发生,检测同时读写失效的测试算法为:

表示对当前地址写入111,同时对下一地址读出000。通过对相邻单元分别写入和读出,判定这种操作方式是否会引起失效。时间复杂度为10B,B为存储器字的容量。

与传统测试算法的比较

以上以3位字长为例,介绍了单向双端口存储器的检测方法,包括了字间失效的检测、字内失效的检测和同时读写失效的检测,总的时间复杂 度为51B。对于由任意位组成的字,可以对上述算法中的3位测试向量拓展成相应字长的测试向量,测试的时间复杂度不变。上述算法中对字间失效和字内失效的测试时间复杂度为41B,传统的测试方法采用了March C+算法检测,使用多个不同的测试向量,如0000,0101,0011等,实现对字间失效和字内失效的检测,这种测试方法不能保证对字内失效检测的覆盖率,March C+测试算法的时间复杂度为14B,因此当使用的测试向量大于3个时,测试的时间复杂度将大于上述针对字间失效和字内失效设计的测试算法。

结 论

分析了单向双端口SRAM的失效,描述了基于字的队列检测算法,可以有效地检测字间失效、字内失效和同时读写失效,具有失效覆盖率高和测试时间复杂度低的优点。

关键字:存储  地址  译码  检测 引用地址:单向双端口SRAM的测试算法

上一篇:基于SCP1000-D01的气压计的设计
下一篇:单片机测试系统的数据存储和管理

推荐阅读最新更新时间:2024-05-13 18:38

可控硅检测方法与应用及特性
可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。 1. 可控硅的特性。 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅
[测试测量]
宽带阻抗测量仪的设计——信号检测电路设计(一)
信号检测电路用于检测信号经过被测网络后其幅度和相位的变化规律。被测网络的幅度是指被测电路接收端信号相对于信号源输出的增益,而相位是指两者的相位差值。信号检测电路的作用在于检测被测网络的幅度和相位差,并转换为可以被DSP接收的数字量。 4.1方案设计 对幅度和相位的检测,既可以采用数字的方法,也可采用模拟的方法。采用数字的方法一般要先通过模拟/数字转换器将信号转换为数字量,通过软件对增益和相位进行检测,但由于信号频率最高达10MHz,所以该方法要求高速ADC,而且由于被测网络的输入信号幅度达60dB,这样就要求ADC的分辨率至少在14位以上,显然难以实现,因此该方法不能采用。 采用模拟方法有多种实现方式。如可以使用模拟乘法器,其
[测试测量]
比手环监测更灵敏 新款睡眠质量检测仪长这样
科学家们发现,获得适当的睡眠似乎有助于我们的免疫系统发挥最佳功能。当我们的身体休息时,T细胞会在我们的身体内游走。其他免疫细胞也可以更好地休息。   忙碌了一天,晚上好好睡一觉事件多么幸福的事情。研究证明,成人一天睡眠达到8小时( 青少年更多)有助于身体健康,集中精力工作、学习,记忆力也更好。   但是,现在的年轻人无论是迫于压力还是喜欢夜生活,晚上“难以入睡”成了他们遇到的棘手问题。   近日,日本一家公司推出一款帮助睡觉并监测睡眠质量的产品,该产品类似于手环但戴在手指上即可进行数据监测和采集。   与手腕等其他产品相比,睡眠时手指的动作非常细微,活动的频率也比较多。通过分析手指的细微动作,能够更加准确地测量睡眠周期。   
[医疗电子]
ABI-3400专业级电路板故障检测仪的特点和功能介绍
ABI-3400专业级电路板故障检测仪 特点: 三维立体V-I-F曲线测试仪 变频扫描V-I-F曲线测试仪 专业级V-I-F曲线测试仪 静态诊断电路板, 不必外加电源即可进行测试。 检测电路板上受损器件。 可检测出具有泄漏型故障的器件。 可检测出不相同的器件。 将损坏风险降至最低。 具多通道测试(64通道), 可减少测试时间。 ABI-3400电路板故障检测仪 可在静态条件下分析器件及整板测试采用独特的测试方法, 测量电气信号曲线, 侦测错误/瑕疵问题, 包含内部损坏器件与不一致器件- 增加问题检测范围, 同时, 减少测试时间! 何谓V/I曲线测试? 对于模拟及数字电路板, V/I曲线测试是成熟、可靠的解决方案。 透过一个
[测试测量]
ABI-3400专业级电路板故障<font color='red'>检测</font>仪的特点和功能介绍
震动检测仪的主要参数
  震动检测仪是对震动进行检测的一种仪器,大家应该都有听说过,那么大家对震动检测仪了解多少呢?这首先大家应该多多了解一下震动检测仪的主要参数,下面 北京布莱迪 专家来给大家介绍一下震动检测仪的主要技术参数。   震动检测仪是一款基于微处理器最新设计的机器状态监测仪器,具备有振动检测,轴承状态分析和红外线温度测量功能。其操作简单,自动指示状态报警,非常适合现场设备运行和维护人员监测设备状态,及时发现问题,保证设备正常可靠运行。   技术指标输 入:100mV/g IEPE型振动传感器,80cm一体电缆和BNC接头   振动测量:加速度 0-20 g 峰值,频率范围 10-12,000Hz   速度:0-200 mm/s 有效值,
[测试测量]
基于骨架模板配准的OLED显示屏斑痕缺陷检测技术
OLED(Organic LED)显示屏作为新一代的显示设备,随着生产工艺的日趋完善,目前已广泛应用于MP3、手机、数码相机等低功耗的设备中。在基于图像处理的自动化检测过程中,为保证产品的质量,生产商迫切需要一种有效的算法,以快速抓取和识别显示屏中存在的各种缺陷。在OLED显示屏的各种缺陷中,斑痕缺陷(也称其为Mura缺陷)是最常见、最复杂的,同时也是最难检测的一种缺陷 。主要表现为对比度低、边界模糊、形状多样、亮度显示不均匀等特征。因此,如何有效地检测斑痕缺陷已成为OLED显示屏制造过程的关键环节。  近年来,随着图像处理理论的发展,相关研究人员已提出了很多检测算法。Yen PingLang等提出了基于背景图像重建的检测方法 ,
[电源管理]
基于骨架模板配准的OLED显示屏斑痕缺陷<font color='red'>检测</font>技术
德国大陆(Continental)公开用于检测正面碰撞的新型传感器
      德国大陆(Continental)公开了用于检测正面碰撞的新型传感器“CISS”(Crash Impact Sound Sensing)的详情(图1)。该产品可将车体变形时的固体传播声音作为高频振动检测出来,使判断是否应该打开气囊的时间缩短到了10~15ms,只有原来使用加速度传感器的一半左右。这种传感器已被德国大众(Volkswagen)的现行“高尔夫”采用。           CISS与原来的加速度传感器一样,可将发生碰撞时的冲击作为频率振动检测出来。不过,加速度传感器使用0~400Hz的低频,而CISS可检测出500Hz~20kHz的高频振动。而且,CISS的带宽是加速度传感器的约50倍。大陆公司利用碰
[汽车电子]
车载CAN总线记录仪实现大容量存储系统
引言   CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境。本文利用“FPGA+单片机”作为存储控制器,采用基于LZW算法的数据压缩技术,以SDRAM作为周期存储和缓存,SD卡作为最终存储载体,实现车载CAN总线记录仪实现大容量 存储系统 。   1 系统整体结构设计      如图1所示,存储系统主要包括以下模块:FPGA主控模块、CAN总线监听控制模块、数据压缩模块、SDRAM控制模块和单片机控制CH376模块。本
[模拟电子]
车载CAN总线记录仪实现大容量<font color='red'>存储</font>系统
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved