引言
ADC是模拟系统与数字系统接口的关键部件,长期以来一直被广泛应用于通信、军事及消费电子等领域,随着计算机和通信产业的迅猛发展,ADC在便携式设备上的应用发展迅速,正逐步向高速、高精度和低功耗的方向发展。
目前市场上占统治地位的ADC的类型主要包括:逐次逼近型(SAR)、Σ-Δ型、流水线型。Σ-Δ型可以实现很高的分辨率,流水线型可以保证很高的采样速率,这两种体系结构都是为了满足某种特定需求的纵向市场而设计的。SAR ADC是采样速率低于5MSPS的中高分辨率应用的常见结构,由于其实质上采用的是二进制搜索算法,内部电路可以运行在几MHz,采样速率主要由逐次逼近算法确定。
本文基于上华0.6μm BiCMOS工艺设计了一个8通道12位串行输出ADC,转换核心电路采用逐次逼近型结构,并在总结改进传统结构的基础上,采用了电压定标和电荷定标的复合式DAC结构,这种"5+4+3"的分段式复合结构不但避免了大电容引入的匹配性问题,而且由于引入了电阻,减小了电路本身的线性误差,比较器的实现采用多极级联的放大器结构,降低了设计复杂度,最后基于CSMC 0.6μm BiCMOS工艺实现了整体版图设计。
系统结构
SAR ADC电路结构主要包含五个部分,采样保持电路,比较器、DAC,逐次逼近寄存器和逻辑控制单元,转换中的逐次逼近是按对分原理,由控制逻辑电路完成的,其工作过程如下:启动后,控制逻辑电路首先把逐次逼近寄存器的最高位置1,其他位置0,将其存储到逐次逼近寄存器,然后经数模转换后得到一个电压值(大小约为满量程输出的一半)。这个电压值在比较器中与输入信号进行比较,比较器的输出反馈到DAC,并在下一次比较前对其进行修正。即输入信号的抽样值与DAC的初始输出值相减,余差被比较器量化,量化值再来指导控制逻辑是增加还是减少DAC的输出,然后,再次从输入抽样值中减去这个新的DAC输出值。不断重复这个过程,直至完成最后一位数字的实现,由此可见,这种数据的转变始终处于逻辑控制电路的时钟驱动之下,逐次逼近寄存器不断进行比较和移位操作,直到完成最低有效位(LSB)的转换,这时逐次逼近寄存器的各位值均已确定,转换操作完成。
由于本设计针对的是串行多路通道转换技术,所以本文在SAR ADC基本结构的基础上,在模拟输入的前端加入多路复用模块,并在输出后端加入并串转换电路。
为实现信号的快速精确转换,SAR ADC中重要部件是采样保持电路,比较器和DAC,等效输入电路如图1所示,在获取数据期间,被选信道作为输入给电容CHOLD充电,获得时间结束后,T/H开关打开,电荷维持在CHOLD上作为信号样本,与DAC中产生的模拟信号进行比较,将比较结果输入并/串输出寄存器,在三态总线控制下输出数字位。
电路设计与实现
采样/保持电路的性能高低限定了整个ADC的速度和精度,在设计中采用双差分底板采样技术,双差分结构以获得优良的AC性能,另外底板采样技术的应用也极大的减少了电荷注入、时钟馈通以及有限带宽所造成的误差。优化了整体性能。其中比较器的实现采用3个放大级联结构,这样不仅极大的提高了增益,而且减小了比较器的设计难度,提高了电路性能,下面重点讲述DAC的设计与实现。
SAR ADC的速度和分辨率主要受反馈电路中DAC的速度、分辨率和线性的限制,精确设计DAC是本次设计的重点和关键,传统的SAR ADC多采用简单的电阻分压式或电容电荷型结构来实现,电阻分压式转换器的优点是只需要用到一种电阻,容易保证制造精度,即使电阻出现较大的误差,也不会出现非单调性。但n位二进制输入的电阻分压式数模转换器需要2n个分压电阻以及同样数量的模拟开关,所以随着位数的增加,其所需元器件的数量会呈几何级数增加,这是它的缺点,单独用这种结构来做一个DAC的情况比较少见,但是它却在8位以下的SAR ADC中常用到,电容电荷型DAC的优点是精度较高,但缺点是面积大,对寄生电容敏感,而且还需要相连时钟,增加了设计制造的复杂度。
本文设计的DAC采用复合结构,由于本芯片是一个12位精度的ADC,要求DAC也要达到12位精度,而且对于位数较高的转换器,从芯片面积和性能方面综合考虑,组合结构较单一结构优势显著,因而本文采用5+3+4复合结构实现,即高5位MSB采用电容网络实现,中间3位采用电子网络,而低4位LSB仍用电容网络实现,这样设计避免了不同结构实现上的不足,结合了各自的优点,较好的实现电路设计目标。此DAC的优点是具有一定的单调性。因为电阻串本质上是单调的,而且3个数字位只有一种阻值的电阻,不存在电阻失配问题,电阻串不需要预充电,转换速度比电容阵列的转换速度快,但芯片占用面积较大,电容网络最多只需满足5位数字位对应的电容精度要求便可实现12位转换匹配,所以在分配每段位数时,本文在芯片面积和转换速度之间进行了折中考虑,单独对DAC进行仿真得到其建立时间仅为12ns。
设计仿真
根据电路功能及指标要求,在Cadence环境下用Hspice对电路进行仿真,通过控制逻辑精确控制,最后实现12位数字的转换结果,图2为选择第8通道对2.5V电压进行转换的输出波形,实现了模拟信号到数字信号的正确转换,12位ADC的工作温度范围为-55℃-125℃,访问条件为VDD=5.0V,VSS=0V,VREF=4.096V,VAGND=0V,最后基于CSMC 0.6μm BiCMOS工艺完成了版图设计,面积为2.5×2.2mm2。
结语
本文基于CSMC 0.6μm BiCMOS工艺设计实现了一个12位串行输出ADC,采用电压定标和电荷定标组合式数模转换器技术,比较器的实现采用多极级联放大器形式,通过合理的时序控制,实现了较好的性能,转换速率为7.5μs,正常工作电流2.8mA,增益误差小于2LSB,线性误差小于1个LSB,最后版图面积为2.5×2.2mm2,此转换器对于消费电子、汽车电子及便携式产品等方面应用是具有较好性价比的选择。
上一篇:TNY256型单片机开关电源及其应用
下一篇:基于先验预知的动态电源管理技术
推荐阅读最新更新时间:2024-05-13 18:16
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况