摘要:在Buck同步整流技术的基础上,充分利用其电路的特点,提出了双向直流变换器,并分析了其可行性。针对双向恒压和双向恒流两种控制方式,分析了各自的开关管驱动脉冲要求,并给出了相应控制脉冲的实现方法。通过实验加以验证。
关键词:双向;同步整流;恒压;恒流
0 引言
同步整流技术是近几年研究的热点,主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。
此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC/DC变换提供了可能。在需要单向升降压且能量可以双向流动的场合,很有应用价值,如应用于混合动力电动汽车时,辅以三相可控全桥电路,可以实现蓄电池的充放电。
l 工作原理
1 1 电路拓扑
双向同步整流电路拓扑如图1所示。当电路工作于正向Buck时,Sw作为主开关管,当Sw导通时,Sw关断,电感L储能;当Sw关断时,SR导通续流,电感L释能给输出负载供电。当电路工作于反向Boost升压电路时,SR作为主开关管,当SR导通时,Sw关断,电感L储能;当SR关断时,Sw导通续流,电感L释能给输出负载供电。
1.2 参数设计
设置电感L是为了抑制电流脉动,因此其设计依据是电流纹波要求。电容C1主要是为了在Boost电路Sw关断时,维持输出电压恒定,而电容C2主要是为了抑制Buck输出电压脉动,其设计依据是电压纹波要求,因此两个电容的参数设计并不一致。具体算式如下。
式中:Vg为Buck电路输入电压;
Vo为Boost电路输入电压;
D为Sw管的占空比:
△Q为对应输出电压纹波的电荷增量;
△Vo为Buck电路输出电压纹波要求;
△Vg为Boost电路输出电压纹波要求;
△lmin为Buck和Boost电路电流纹波要求的较小值;
I为电感电流。
1.3双向恒流型控制
1)当电路工作在Buck模式时,被控制的是电感电流,目的是为了维持电感电流恒定。电路参数方程为
2)当电路工作在Boost模式时,被控制的是Sw的平均电流,目的是为了维持此平均电流恒定。电路参数方程为
由以上分析可知,电路作正向Buck和反向Boost运行时,被控制的电流都有
,则两种电路工作模式都可以将Sw定义为主开关管,控制电路直接对Sw进行控制,SR则采用互补控制。
图2给出了闭环双向恒流控制的系统框图,电流经采样电阻采样,由外部控制脚(Select)控制通道选择器,切换两路被采样信号。采样得到的信号由运放放大,经PID补偿后与三角波比较得到方波信号去控制驱动开关管,从而构成一个闭环的负反馈系统。
1.4双向恒压型控制
1)当电路工作在Buck模式时,控制的目的是为了维持输出电压恒定。电路参数方程为
Vo=DVg,
2)当电路工作在Boost模式时,被控制的是电压,控制目的是为了维持电压恒定。电路参数方程为
由以上分析可知,电路作正向Buck和反向Boost运行时,被控制的电压与Sw占空比呈不同的变化逻辑。这就为驱动电路提出了更高的要求。一般的控制驱动芯片不能提供这样的功能。
图3给出了闭环双向恒压控制的系统框图,由外部控制脚(Select)控制通道选择器,切换两路被采样的电压信号。采样得到的信号经分压电阻分压后,再经PI补偿与三角波比较得到方波信号去控制驱动开关管,从而构成一个闭环的负反馈系统。
2 驱动电路设计
2.1 单向驱动脉冲的要求
双向直流变换电路的工作原理同传统的Buck及Boost变换器类似,当主开关管导通时,续流管关断,当主开关管关断时,续流管导通工作。所以两管驱动脉动应互补,同时为了防止共通,发生短路而烧毁器件,必须设置死区。
2.2 双向恒流控制的驱动设计
如图4所示,B脉冲经D脉冲延时所得,其延时时间等于死区时间。互补带延时的两路控制脉冲可由以下逻辑获得,
,图5给出了相应的硬件实现电路。
2.3 双向恒压控制的驱动设计
当采用恒压型控制时,Buck和Boost电路各自的被控电压随主开关管的占空比D的变换逻辑刚好相反,因此,为了实现双向直流变换,还须增加一个控制脚,以切换两种工作模式下主开关管的定义,实现方法是交换两路控制脉冲,用逻辑电路来实现,逻辑表达式为:
当
,电路工作在正向Buck模式;相反,当K=0时,
,SR=DB,电路工作在反向Boost模式。
根据上面的分析,图6给出了双向恒压控制的控制驱动脉冲实现电路。
最后,需要指出的是,采用数字控制,系统更简单,控制更灵活,抗干扰特性强,系统维护也方便,但考虑到单片机或DSP,数字信号处理器成本相对较高,故以上双向同步整流变换控制的分析设计采用硬件电路实现。
3 实验结果
正向Buck输入电压24v,输出10v/6A;反向Boost输入电压10v,输出24v/2.5A。
图7和图8为双向恒压控制时的驱动波形,控制K脚的电平逻辑可以实现两路输出脉冲的互换,从而满足电路双向工作时的驱动要求。图9-图12为双向恒流和双向恒压控制下的输出电压和电流波形。
4 结语
本文是在Buck同步整流的基础上,充分利用电路从拓扑上整合了Buck和Boost两种变换器的特点,提出了双向DC/DC变换,而并针对双向恒压控制和恒流控制两种不同的控制方式,分析了对驱动电路的要求,并给出了各自驱动脉冲的实现方法。实验结果与理论分析吻合。
引用地址:应用同步整流技术实现双向DC/DC变换
上一篇:开关电源的小信号模型及环路设计
下一篇:静止变换式航空地面电源PWM电压控制器的设计
- 热门资源推荐
- 热门放大器推荐
小广播
热门活动
换一批
更多
最新应用文章
更多精选电路图
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
11月16日历史上的今天
厂商技术中心