基于MOSFET控制的PWM型直流可调电源的研制

发布者:云自南国来最新更新时间:2007-12-17 来源: 郑州工业高等专科学校学报关键字:开关  稳压  高频  变压 手机看文章 扫描二维码
随时随地手机看文章
引 言原文位置

功率场效应管MOSFET是一种单极型电压控制器件,它不但具有自关断能力,而且具有驱动功率小,关断速度快等优点,是目前开关电源中常用的开关器件。采用MOSFET 控制的开关电源具有体积小、重量轻、效率高、成本低的优势,因此,较适合作仪器电源。本文给出了一种由MOSFET 控制的大范围连续可调(0~45V) 的小功率稳压电源设计实例。

原文位置

总体结构与主电路

原文位置

图1 为该电源的总体结构框图。工作原理如下:  

原文位置

原文位置

  图1  原理方框图

原文位置

全桥整流电路将电网电压220V 整流成不可调的直流电压Ud = 1. 2U约等于198V。两个等值滤波电容上的电压分别为99V 以上,经DC/AC 变换器逆变之后输出20kHz、脉宽可调的交流电压,又经高频变压器的两个副边分正负半周送入整流滤波电路,输出直流电压。该电源直流输出电压的大小靠 PWM发生器的输出脉冲宽度来控制。

原文位置

主电路如图2 所示。

原文位置

  

原文位置

原文位置

  图2  主电路

原文位置

主电路中实现DCPAC 变换的关键元件是功率场效应管VT1 和VT2 。当VT1 管开通,VT2 截止时,电路中的电流从电容C1 正极到VT1 的D1 - S1 ,再通过变压器原边回到电容器C1 的负极形成回路,uAB为正电压。变压器的副边感应电压同名端为正,VD1 导通,输出U0 上正下负。

原文位置

当VT2 开通,VT1 关断时,同样可推出上述结论:U0 上正下负。U0 的大小取决于控制电路使VT1 、VT2 的导通时间。

原文位置

控制电路

原文位置

控制电路功能是实现PWM 波形合成及可控DC/AC 变换器的隔离驱动。

原文位置

PWM波形的产生

原文位置

该电路的电源设计是以三端集成稳压器为核心的±15V 直流稳压电源

原文位置

(1) PWM的控制原理

原文位置

脉宽PWM波形产生采用功能强大的TL494 定频调制芯片,该芯片有16 个引脚,内部电路与外围电路如图3 示。

原文位置

原文位置

  图3  TL494 内部电路及外围电路

原文位置

TL494 芯片的引脚13 低电平时,引脚8 和11 同步工作,单端输出;引脚13 高电平时,引脚8 和11推挽工作,双路输出。本电路采用后种工作方式。该芯片的最高工作频率为300kHz ,实际工作频率由引脚5、6 所接的电阻与电容决定,其振荡频率算式为f = 1.1P(RTCT ) ,本设计选择的振荡频率为20kHz ,锯齿波在片内被送到比较器1 和2 的反相端。锯齿波与片内的误差放大器的输出在PWM 比较器2 中比较,而死区控制电平与锯齿波在死区时间比较器1 中比较,两者的输出分别为一定宽度的矩形波,它们同时送到或门电路,经分频器分频后,再经相应的门电路去控制内部三极管交替导通,使得引脚8 和11 向外输出相位互差180°的PWM 波形。其工作波形如图4 所示。

原文位置

  

原文位置

原文位置

  图4  工作波形

原文位置

误差放大器1 的反相端(引脚2) 接可调给定电压Ug 。改变Ug ,可改变引脚3 的电压值,从而改变PWM比较器2 输出波形的宽度,实现U0 从0~45V连续可调。

原文位置

(2) 死区时间的控制

原文位置

为了保证开关器件VT1 与VT2 在一只管子关断另一只管子开通时有足够的时间间隔,防止功率开关元件上下直通造成的直流侧短路,该电路用引脚4 控制两个开关器件的死区时间。由内部基准源引脚14 串联电容器C5 提供死区电压参考数值,并通过R5 接地来共同决定死区时间最小值Toff (min) 。

另外,在输入电源刚接通时,R5 与C5 又构成软起动器。由于电容上的电压不能突变,所以起动瞬间,死区控制端4 与内部基准电压14 端等电位,为高电平,死区比较器1 也输出高电平,封锁输出端的两个晶体管;随着电容电压的不断上升,4 端电位逐渐降低,这两个晶体管才逐渐开通,使得该电源的输出电压不会突变,实现软起动。正常工作时,R5 上的电压约为0。这时主电路开关元件的导通时间(它决定正常工作时的输出电压值) 将由接入误差放大器1 反相端的给定电压Ug 和接入同相端的反馈电压Uf 比较确定。原文位置

隔离、驱动电路

原文位置

VT1 、VT2 采用专用集成驱动模块IR2110 来驱动,隔离驱动电路如图5 所示:  

原文位置

原文位置

  图5  IR2110 驱动模块及外部接线电路

原文位置

过压过流保护

原文位置

为改变负载曲线,保护MOSFET的安全运行,防止过电压和减小du/dt ,在MOSFET 的D1 - S1 间并入电阻、快速二极管和电容组成的过电压吸收电路。过流信号从主电路检出,从引脚16 送向误差放大器2的同相端,引脚15 为比较基准,当出现过流时,引脚16 的电压上升,则比较器2的输出引脚3为高电平,封锁脉宽信号。

原文位置

结束语

原文位置

该电源尽量采用在工业环境下具有高可靠性的常用集成电路及功率模块,以易实现、易维修为出发点,以实用性为宗旨。经过实验验证,本电路抗干扰能力强,输出电压稳定,工作可靠,输出电流可达15A ,较适合于做仪器和装置的直流供电电源,有较好的推广价值。

关键字:开关  稳压  高频  变压 引用地址:基于MOSFET控制的PWM型直流可调电源的研制

上一篇:2SD315A在驱动大功率IGBT中的应用
下一篇:POLA DC/DC模块电源砖电路设计剖析

推荐阅读最新更新时间:2024-05-13 18:39

曼科开关:提高开关电源效率的妙计
如何让有限资源利用率最大化,是当今倡导绿色、环保新生活的时代的主题。创立于1985年的广东锦力电器有限公司,历经开关电源市场30年锤炼,旗下曼科开关更是一直以秉承稳健务实的作风积极开发研究提高开关电源效率的方法,实现发挥资源的最大功效。 相继荣获 广东省著名商标 、 中国电工十大品牌 等荣誉的曼科,是开关行业知名品牌。曼科开关以 电气价值的典范 为核心理念,经过30年稳健发展,营销网络遍及全国,在国内300多个大中城市设立办事处100多个,销售网点上万个。专注于开关电源效率的提高,曼科得出一系列有研究价值的结果。 开关电源的功耗包括由半导体开关、磁性元件和布线等的寄生电阻所产生的固定损耗以及进行开关操作时的开关损耗
[电源管理]
功率MOSFET并联均流问题研究
引言       随着电力电子技术的迅速发展,功率MOSFET以其高频性能好、开关损耗小、输入阻抗高、驱动功率小、驱动电路简单等优点在高频感应加热电源中得到了广泛的应用。但是,功率MOSFET容量的有限也成了亟待解决的问题。从理论上讲,功率MOSFET的扩容可以通过串联和并联两种方法来实现,实际使用中考虑到其导通电阻RDS(on)具有正温度系数的特点,多采用多管并联来增加其功率传导能力。   1 影响功率MOSFET并联均流的因素       在功率MOSFET多管并联时,器件内部参数的微小差异就会引起并联各支路电流的不平衡而导致单管过流损坏,严重情况下会破坏整个逆变装置。影响并联均流的因素包括内部参数
[电源管理]
防止开关转换器输出浪涌引发的启动问题
摘要 在要求降低输出噪声的应用中,由于输出浪涌过大,开关转换器可能会遇到延迟启动的问题,或者可能根本无法启动。输出滤波器设计不当引起的输出浪涌电流及其影响,可以通过增加软启动时间、提高开关频率或减小输出电容来降低。本文介绍一些实用设计考虑事项,以防止输出浪涌过大引发启动问题。  简介 许多开关转换器设计是由严苛的输出噪声要求驱动的。对低输出噪声的需求促使设计人员加大输出滤波,例如在输出端使用多个电容。随着输出轨上电容的增加,过大浪涌电流可能会给启动过程造成问题,导致电感饱和或损坏功率开关。  不同于开关控制器,单片开关稳压器的功率开关在芯片内部。这对于负载点开关转换器应用而言是一种理想方法,因为它具有更小的PCB尺寸和更好的栅极
[嵌入式]
三种方法帮助LED开关电源实现小型化“梦想”
LED开关电源是采用PWM技术,即脉宽调制技术控制的新型 开关电源 ,由电路来控制开关管而进行高速的道通和截止。是将直流电转化成高频交流电来给变换器进行变压,使其产生所需要的一组或多组电压,转化为高频交流电的道理是高频交流在变压器电路中的效率要比市电50Hz或60Hz高。它在节约能源、节约资源及保护环境方面都具有重要的意义。 既然如此,我们应该怎样将LED 开关电源 变得愈加小型化呢?下面有三种具体的办法: 其一,采用新型电容器。为了减小电力电子设备的体积和重量,须设法改进电容器的性能,提高能量密度,并研究开发适合于电力电子及电源系统用的新型电容器,要求电容量大、等效串联电阻(ESR)小、体积小等。 其二,应用压电变压器。应用压电
[电源管理]
库克表示:iOS更新后电池性能限制开关将上线
新浪手机讯 1月18日上午消息,苹果公司CEO库克在接受采访时表示,在降频事件发生后,苹果已经决定将在未来iOS更新后打开电池状态查询功能,并增加性能限制开关,可以让用户自主选择是否使用性能调节功能。 库克接受采访   近期,苹果公司CEO库克接受了美国广播公司的采访,他表示,苹果公司将在未来开放电池状态查询功能,并将在最新的iOS更新中,加入性能调节开关,也就是说用户可以自行选择是否去打开此功能。   同时他还提到,如果用户选择保持CPU和GPU的性能而不去打开性能调节开关,手机可能面临耗电过快关机的风险,而且无法在紧急情况下使用iPhone。   库克在采访中表示,苹果将在下个月发布开发者测试版(可能是iOS 11.3),
[手机便携]
TI推出超低功率低压降线性稳压
德州仪器(TI)推出超低功率低压降线性稳压器TPS7A02,其工作静态电流(IQ)可低至25 nA,仅为行业内小型器件的十分之一。新型稳压器在压降的条件下也能在轻负载时实现低 IQ 控制,使工程师可以将应用的电池寿命至少延长一倍。此外,它还提供同类器件最优的瞬态响应,以实现更快的唤醒速度,缩短应用的响应时间并提高动态性能。该解决方案通过缩减电源供应解决方案的尺寸,可帮助工程师快速设计出更小、更轻、更高效的产品,且它的通用行业封装允许在现有设计中进行引脚对引脚的直接替换。更多关于产品的信息,请访问TPS7A02。 TPS7A02 可帮助工程师解决许多对功耗敏感、高精密度以及低功耗应用中的关键设计挑战,例如电网基础设施、楼宇自动化
[电源管理]
TI推出超低功率低压降线性<font color='red'>稳压</font>器
一种高频推挽DC-DC变换器设计方案
0 引言 随着现代汽车用电设备种类的增多,功率等级的增加,所需要电源的型式越来越多,包括交流电源和直流电源。这些电源均需要采用开关变换器将蓄电池提供的+12VDC或+24VDC的直流电压经过DC-DC变换器提升为+220VDC或+240VDC,后级再经过DC-AC变换器转换为工频交流电源或变频调压电源。对于前级DC-DC变换器,又包括高频DC-AC逆变部分、高频变压器和AC-DC整流部分,不同的组合适应不同的输出功率等级,变换性能也有所不同。推挽逆变电路以其结构简单、变压器磁芯利用率高等优点得到了广泛应用,尤其是在低压大电流输入的中小功率场合;同时全桥整流电路也具有电压利用率高、支持输出功率较高等特点,因此本文采用推挽逆变-高频变
[电源管理]
一种<font color='red'>高频</font>推挽DC-DC变换器设计方案
汽车改装开关控制盒方案
近20年,汽车保有量增长了14倍,越来越多的人拥有了自己的车辆。而这也催生出了改装的思想,毕竟不是每一辆车都能完全符合使用者的体验。加装矩阵大灯、喇叭或者是座椅加热,车载冰箱等设备、功能,提升驾驶体验。毕竟是改装,这就需要额外的汽车控制系统来控制这些车内设备及功能。 开关控制盒就是一个安装、使用都很简单的控制系统,针对不同的设备可启动不同的模式驱动。本文将探讨一下汽车改装开关控制盒MOS管方案和传统继电器方案的对比。 对比传统继电器 MOS方案的功能扩展 1.控制升级 (1)控制面板(按键或液晶触摸屏); (2)遥控面板、遥控器(2.4G或433信号通讯,免布线,易安装); (3)手机APP控制(蓝牙信号通讯
[嵌入式]
汽车改装<font color='red'>开关</font>控制盒方案
小广播
最新应用文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved