POLA DC/DC模块电源砖电路设计剖析

发布者:心满意足最新更新时间:2007-12-19 来源: 今日电子关键字:DSP  时序  控制  过流 手机看文章 扫描二维码
随时随地手机看文章
POLA模块电源

板级电源设计的成熟度和可靠度直接影响着电子产品的稳定性。在设计复杂的板级DC/DC时,为了减小设计风险,提高设计成熟度,加快开发一次成功率,越来越多的方案引入了DC/DC电源模块。目前主流的DC/DC模块电源生产商主要分为DOSA联盟和POLA联盟两大阵营。

POLA模块是非开放标准的设计,所以要深入分析电路有一定难度。但是考虑到POLA模块电源的电路设计基本相同,所以笔者以PTH03030 POLA模块电路为例,对其电路设计进行了深度剖析。

PTH03030模块电源总体架构分析

PTH03030模块电源是一种非隔离的POLA电源,可输出30A电流,模块面积大约9cm2,采用PCB多层板设计,可以满足目前高密度板级电源的应用需求,例如多处理器、高速DSP系统等。

PTH03030模块采用高密度的双面表贴设计,通过一个外接的电阻实现输出电压在0.8~2.5V之内可调,输出效率可以达到93%,工作温度范围为-40~+85℃。PTH03030模块的产品外观如图1所示。

图1 POLA PTH030模块电源外观图

PTH03030模块的系统结构如图2所示。其中,自动电压跟踪模块能够跟踪电源电压的上下电时序,实现输出电压时序控制;也可以实现成多个POLA模块的输出电压互相追踪,或者共同追踪外部电压的上下电时序。这个特点非常适合系统中需要多个电压供电且对于上电先后顺序有严格要求的板级电源设计方案。

ON/OFF使能模块用于控制模块电源的输出,在需要单独关闭部分板级电路功能的场合非常适用。

图2 PTH03030模块的系统模块框图

电压输出微调模块支持输出电压降检测和补偿调节。该模块还具有输出电压正偏或负偏的微调控制功能,可以使用在系统微调测试的场合。

PTH03030模块保护功能比较齐全,可以实现过温保护、过流保护、欠压锁定保护。

PWM BUCK控制模块设计分析

PTH03030H模块的降压PWM控制模块(U3)的局部电路如图3所示。

图3 PTH03030H模块的BUCK降压PWM控制模块电路图

U3控制器内部主要有基准电源电路、软启动电路、300kHz振荡电路、充电泵电路、过流检测电路等。

U3内部有0.8V的基准电源,用来和输出电压的反馈端子PWM_FB进行环路反馈比较。主流POLA模块电源的输出电压最低值是0.8V。

U3的软启动电路可控制上电速率, 软启动延时时间大约为5~10ms,整个上电过程在15ms完成,典型软启动时间为6.5ms。在软启动功能运行时,TRACK管脚必须连接输入电源电压管脚,屏蔽POLA模块的自动电压跟踪功能。此时,模块电源的上电受内部的软启动上电模块控制。

U3内部的充电泵电路主要通过外接C20电容实现低输入电压的提升,满足内部部分电路高电压的要求。在3.3V输入的条件下,需要C20启动内部充电泵;在5V输入条件下,C20泵电容可以不接。

U3内置的过流检测电路可检测上臂MOSFET的导通电阻RDS(ON)上的电流。如果流过上臂MOSFET的电路超过阈值,其管压降超过R12电阻的压降,导致U3内部的过流比较器翻转,关断PWM输出,实现过流保护。

实际测试中,R12的电压设定在160mV左右,对应45A的过流保护阈值。如果需要实现不同的过流保护阈值,只需要更改R12的电阻值即可。

MOSFET功率模块分析

MOSFET功率模块的电路如图4所示。其中,U1为MOSFET驱动IC,采用TI公司的TPS2834,可实现同步整流MOSFET并联对管的驱动。U1的第2管脚接PWM单路输入,经过内部的双路移相后,输出驱动后级同步整流上臂MOSFET Q2、Q3和下臂MOSFET Q1、Q4。

TPS2834的输出驱动特性比较优异,在输入3.3V,输出0.8V,满载30A负载电流时,MOSFET的驱动波形非常理想,无明显的振铃现象。TPS2834良好的MOSFET驱动特性保证了PTH03030可实现高达90%以上的转换效率。

图4 PTH03030模块的MOSFET功率模块电路

DT管脚就是上下臂MOSFET的死区控制管脚,连接到上下臂MOSFET的中点,可防止出现上下臂MOSFET由于关断延时而瞬时直通造成的过流隐患。

升压模块分析

升压电路由U2及其外围电路组成(见图5)。U2是一款SOT-23封装的升压控制器,内置MOSFET,可极大地简化升压模块的外围电路,实现高密度的模块应用。

图5 PTH03030模块的升压电路

U2的开关频率最大可以达到1MHz,在输出相同电流的条件下,可以极大减小升压电感的体积和输出滤波电容的容量和个数。升压控制器内置过流保护功能,当升压输出电流达到400mA时,进入过流保护,使升压芯片不受进一步的损坏。

PTH03030模块的升压电压为6.5V,实际测试最高可以达到28V的升压输出,升压后的电源提供整个模块的MOSFET驱动IC U1,电压跟踪比较运放的供电。

自动电压跟踪模块分析

PTH03030模块的一个主要特点就是支持自动电压跟踪控制,由施加参考电压在TRACK脚来实现。施加在TRACK脚上的电压和输出电压通过模块的低电压运算放大器进行实时误差比较放大,误差比较电压经下一级的电压缓冲后,直接控制PWM控制器的FB反馈电压。只要运放的输出响应足够快,就能保证PTH03030的输出电压和TRACK电压精密跟随上下电的电压输出时序。

图6 PTH03030模块的自动电压跟踪功能典型应用电路

自动电压跟踪功能典型应用电路如图6所示,2个模块的TRACK管脚一起连接到Q1的D级。系统上电时,控制电平为低电平,Q1关断,TRACK管脚电压上升,上下两块POLA模块的输出电压跟随TRACK脚电压同步上升。当模块达到各自的输出电压设定值时,电压自动跟踪完成,模块各自达到设定点,完成时序上电控制。当需要系统下电时,控制电平转为高电平,Q1导通,TRACK电压下降,模块输出跟踪下降。

输出微调模块分析

PTH03030模块的微调模块外部应用电路如图7所示。模块的微调输出电压正/负偏输出的控制脚分别是9和10脚,正偏微调电阻Ru通过场效应管Q2接地,负偏微调电阻Rd通过场效应管Q1接地。当需要输出进入正偏模式时,只要在Q2的栅极施加高电平,使Q2导通,Ru回路导通,通过内部的微调电压分压,可实现输出电压的正偏移输出,负偏电压微调输出同理。

图7 PTH03030模块的输出电压正偏/负偏微调应用电路

保护功能模块分析

PTH03030模块的全局过温保护电路如图8所示。U4是一款SOT-23封装的温度传感器IC,通过和外围电路配合可以实现模块的过温保护功能,防止模块电路出现异常过温烧毁的隐患。过温保护电路在模块温度超过OTP保护阈值时,会自动将INHIBIT使能管脚电压下拉,输出全局关断电压。

图8 PTH03030模块的保护电路

过温保护不采用芯片内置的过温保护电路,主要是考虑到POLA模块上的多种控制芯片的过温保护阈值存在离散性。而通过OTP电路实现全局过温联动,确实是不错的专业设计考虑。

PTH03030H的ON/OFF开关由INHIBIT使能管脚控制,可实现全局模块的关断或者输出。INHIBIT管脚不是TTL接口的电平,在设计阶段注意不能直接和3.3V逻辑器件的I/O直接连接,推荐接法如图9所示。

图9 PTH03030模块的ON/OFF控制应用电路

关键字:DSP  时序  控制  过流 引用地址:POLA DC/DC模块电源砖电路设计剖析

上一篇:基于MOSFET控制的PWM型直流可调电源的研制
下一篇:基于Modbus的EPS应急电源监控系统的研究

推荐阅读最新更新时间:2024-05-13 21:00

剪板机主电机软起动的控制方案
1 引言 中铁株洲桥梁有限公司用于窄钢板下料的主要生产设备—25MN立式 剪板机 是上世纪90年代初生产的老设备,其电控系统为传统的继电器逻辑控制,主电机采用绕线转子异步电动机串频敏变阻器启动方式,由于电控系统老化,加之绕线转子异步电动机有机械换向器和电刷,电气故障日渐增多,维修成本不断上升。此台立式剪板机的电控系统急待改造。 近年来,电气传动和控制技术的发展日新月异,PLC在机械设备自动化控制中大量应用,新型的电动机电子控制器(即软起动器)在大功率三相异步电动机的限流起动中也开始大量应用。由于立式剪板机主拖动电机功率为37kW,需采用起动限流措施,以减小起动电流对电网的冲击。考虑到绕线转子异步电动机有机械换向器和
[工业控制]
剪板机主电机软起动的<font color='red'>控制</font>方案
基于eCAR平台的发动机控制器测试系统
        汽车中电子系统的数量和复杂程度正在不断地增长。如果把汽车生产总成本中的电子系统成本作为一项指标考虑,到2010年,电子系统成本在生产总成本中所占的份额已达三分之一,这一比例还有增加的趋势。目前,新车中约有90%以上的创新都基于电子产品,这些创新使得汽车生产厂商可以更好的满足客户对于高性能,舒适性,通讯和娱乐的要求。为了将这些大量增长的需求整合到现今的电子系统之中,今天的汽车已安装了大量的传感器、执行器、控制模块和分布式系统。面对这样的现状,汽车生产厂商需要一整套测试平台,才能满足这些日新月异的测试需求,并且,迫于产品周期的考虑,测试平台必须具有更高的测试效率和灵活性。   在这样的背景下,北京泛华恒兴科技有限公司结
[嵌入式]
Diodes 公司推出三阶可设定电压转换速率控制的电源开关
Diodes 公司推出三阶可设定电压转换速率控制的电源开关,可简化并增强固态硬盘中电源轨管理作业 【2023 年 01 月 05 日美国德州普拉诺讯】 Diodes 公司 (Diodes) 推出新款多功能单信道高侧电源开关。AP22980 可选择三种不同电压转换速率,因此能处理的电容负载更宽广,同时维持低涌浪电流,确保系统稳定性 。用于可携式电子设备、计算机硬件和边缘数据中心部署的固态数据储存系统,都非常适合使用这款电源开关。 AP22980 具有 N 通道 MOSFET,内建电荷泵,Rds(ON) 极低仅 5.1mΩ,因此高电流负载应用可达 6A,并显著减少压降与功率损耗。此组件具备独立偏压 (VBIAS) 接脚,
[电源管理]
Diodes 公司推出三阶可设定电压转换速率<font color='red'>控制</font>的电源开关
多通信媒质信息家电网络控制器的研究
    摘要: 提供一种新的基于多通信媒质和统一应用层协议的家庭网关。该网关可用于家电的控制和其它的声、视频设备,低成本、无需或只需很少的连接线、可靠性高;可通过电力线、电话线、以太网、无线网络等进行数据通信,用户可以通过Internet浏览器、电话线PC进行控制;来自Internet/Intranet的控制信息流能够被接收并转换成通用的RS232/RS485协议,使得绝大多数单片机可以处理这些数据。网关还提供了Bluetooth和USB的接口,能够在用户和家电之间方便地建立连接,无需考虑多样的底层协议,为家庭自动化、分布式系统、机器人控制等提供了有效的网络解决方案。     关键词: 信息家电 家庭网关 电力线通
[网络通信]
编程和可配置工具开始决定微控制器的选择
今天半导体工艺几何尺寸的不断减小正在改变微控制器的经济学。新的嵌入式设计开发工具成本快速增长,但微控制器上的数字逻辑线路成本正不断下降。这使得提供具有更多外围的微控制器更具经济性,尤其是如果这些外围属于数字类电路、UART、CAN控制器和以太网MAC等。目前市场上带有更复杂外围的微控制器正不断出现。如果我们将闪存和RAM也看作是外围,那么今天许多微控制器的结构中90%以上的部分都是外围。 这里以目前销售的8051和许多衍生器件为例进行说明。10年前,8051几乎要被弃用,但是现在有许多新产品还在采用8051内核,为提高性能,其外围的数量和种类都有了显着增加。许多熟悉8051的工程师都在关注这些新产品。他们认为自己了解8051内核
[单片机]
编程和可配置工具开始决定微<font color='red'>控制</font>器的选择
基于MC9S12微控制器的发动机高能直接点火控制
摘要:发动机高能直接点火系统需按点火顺序、点火时刻和点火能量的要求实现各点火线圈的独立控制。介绍了以MC9S12DP256微控制器为核心的电子控制单元的软硬件系统设计。利用MCU的增强型捕捉定时器,该将输入捕捉与输出较功能相配合,满足了6个点火线圈初级电路通断电的复杂时序控制要求。该系统在某稀燃天然气发动机的开发中进行了应用,结果表明:在各种工况下,都能获得可靠的点火。 关键词:微控制器 增强型捕捉定时器 点火系统 随着电子技术的发展及对发动机性能要求的提高,微机控制的电子点火系统逐渐取代了传统的发动机点火系统,实现了更为精确的点火时刻和点火能量的控制。 在发动机点火系统中,采用的每个发动机汽缸各带一个点火线圈,对各缸点
[单片机]
可测量脉冲宽度的微控制器串行端口
  很多工业与仪表系统都需要 测量脉冲 输入的持续时间,如转速 传感器 、外部系统的门控与选通脉冲,以及 PWM (脉冲宽度调制)输入的频率等。设计者是采用片上定时器和边沿驱动的中断。但是,如果这些元件不可用,可以用片上的串行同步接收器做这类测量。   可以根据需要的时序精度,设定串行接收器的波特率。接收器每8 bit后中断 微控制器 。可以在应用程序中插入脉冲宽度采集例程,用于读取ISR(中断服务例程)接收到的字节。它会统计和累加接收到的0和1字节,以测量出进入脉冲的持续时间(图1)。   算法测量a的是两个连续上升沿之间的持续时间。当微控制器收到一个既不是0xff也不是0x00的字节时,就检测到了一个上升沿或下降
[测试测量]
可测量脉冲宽度的微<font color='red'>控制</font>器串行端口
LCD1602工作原理 LCD1602液晶屏原理图 LCD1602显示控制
LCD液晶屏显示原理 液晶(Liquid Crystal)是一种高分子材料,因为其特殊的物理、化学、光学特性,20世纪中叶开始广泛应用在轻薄型显示器上。 液晶显示器(Liquid Crystal Display,LCD)主要原理是以电流刺激液晶分子产生点、线、面并配合背部灯管构成画面。 现在来了解一下液晶的物理特性:LCD本身是不能发光的,它需要借助光源进行显示,即我们平时所说的背光。当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。 大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些
[嵌入式]
LCD1602工作原理 LCD1602液晶屏原理图 LCD1602显示<font color='red'>控制</font>
小广播
最新应用文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved