基于Matlab的交流斩波型PFC电路仿真研究

最新更新时间:2009-11-23来源: 现代电子技术 关键字:PFC  Matlab  Boost  Buck 手机看文章 扫描二维码
随时随地手机看文章

  0 引 言

  大量电力电子装置和非线性负载的广泛应用,使得电力系统电压及电流波形发生畸变,产生了大量的谐波,导致电源输入功率因数降低,对电网环境造成严重的污染,使用电设备所处环境恶化,也对周围的通信系统和公共电网以外的设备带来危害。为了改善电网环境,必须了解产生谐波污染的原因,并对谐波进行有效的抑制,进行功率因数校正。为了提高供电线路功率因数,保护用电设备,世界上许多国家和相关国际组织制定出相应的技术标准,以限制谐波电流含量。如:IEC555-2,IEC61000-3-2,EN60555-2等标准,规定允许产生的最大谐波电流。我国于1994年也颁布了《电能质量公用电网谐波》标准(GB/T14549-93)。因此,功率因数校正(PFC)技术便成为电力电子研究的热点。

  1 谐波的抑制与功率因数校正方法

  解决电力电子装置和其他谐波源的污染问题主要有两种方法:一是采用无源滤波或有源滤波电路来旁路或滤除谐波;二是对电力电子装置本身进行改造,使其补偿所产生的谐波,采用功率校正电路,使其具有功率因数校正功能。

  功率因数校正(PFC)技术主要为无源PFC和有源APFC。无源PFC是采用无源元件来改善功率因数,减小电流谐波的,方法简单但电路庞大笨重,有些场合无法适用,且功率因数一般能达到0.90。有源APFC是将一个变换器串入整流滤波电路与DC/DC变换器之间,通过特殊的控制,强迫输人电流跟随输入电压,使得输入电流波形接近于正弦波,并且与输入电压同相位,提高功率因数,使其达到功率因数为1的目标。反馈输出电压使之稳定,从而使DC/DC变换器的输入事先预稳,该方法设计易优化,性能进一步提高,因此应用广泛。

  2 传统功率因数校正电路的结构及其缺点

  基于PFC的拓扑电路的研究现在已经非常成熟,而且得到了十分广泛的应用,使用得最多的是升压斩波(Boost)和降压斩波(Buck)电路。传统的单相功率因数校正电路的结构如图1所示。

  其中,Boost拓扑电路由于结构简单和成本低廉而最为流行,电路中交流电源通过专用整流桥转换成直流,后经过Boost PFC电路输出,该方法具有较好的控制效果,在中小功率电源中应用较为广泛。但其也存在一些缺点:

(1)任何时刻都有三个半导体器件导通,随着功率的提高,整流桥上消耗的功率也会随之增加,从而提高了电源的发热损失,降低了电源效率;
(2)该Boost电路有很高的开关频率,增大了电路的开关损耗;
(3)直流侧的二极管降低了直流电压,增加了电路功耗和不稳定性。
应用这里所提出的交流斩波功率因数校正电路,可以解决传统校正电路中存在的以上问题。

  3 交流斩波功率因数校正器的基本电路和工作原理

  3.1 Boost型交流斩波功率因数校正电路

  Boost型交流斩波功率因数校正电路的基本结构如图2所示。

  Q为双向开关管。当开关管导通时,输入电流通过电感和开关管,电感储能,同时直流侧滤波电容给负载供电;当开关管断开时,输入电流经过电感和整流二极管到达负载端,电感储能和交流电源同时给负载和电容供电。
可以看出,与传统的功率因数校正电路相比较,具有以下优点:当开关管导通时,主回路电流不经过整流桥的二极管,减小了功率损耗;传统电路中的快速恢复二极管VD在交流斩波功率因数校正电路中也不存在了,减小了功率损耗,提高了系统的工作可靠性。

  该电路相当于两个Boost电路的并联,在克服传统Boost PFC电路缺点的同时,保留了升压电路的优点。该方法的优点在于:

(1)增强了传统PFC电路的谐波抑制和功率因数校正能力,可实现单位功率因数;
(2)交流侧的电感增强了电路的电磁兼容性;
(3)降低了电路的传导损失,任何时刻都只有两个半导体器件导通;
(4)通过开关管M1和M2的额定电流较小。

  3.2 Buck型交流斩波功率因数校正电路

  图3所示的为Buck功率因数校正电路的基本结构,Q为双向开关管。当开关管断开时,输入电流通过电感、电容和开关管,电容C1储能。

  当开关管导通时,此时输入电流经过整流二极管到达负载端,电容储能和交流电源同时给负载和电容供电。可以看出,Buck型交流斩波功率因数校正电路中,当开关管断开,主回路电流不经过整流桥的二极管,可达到减小功率损耗的目的。

  4 仿真分析

  Simulink软件是Matlab软件包的扩展,专门用于动态系统的仿真,具有很强的动态系统仿真能力,仿真速度较快,特别是基于simuIink Power System工具箱进行功率因数校正电路的仿真,有两个优点:

  (1)基于器件模型,可以仿真器件参数变化对系统的影响;
(2)仿真模型复杂。精度较高。可以将计算机仿真技术运用到PFC装置的分析和设计中。

   以Boost型为例,对文中所提出的交流斩波功率因数校正电路进行仿真分析。功率因数校正电路采用输入电流断续工作模式的峰值电流控制,仿真参数:uin=311sin ωt,L=0.7 mH,输出功率P=500 W,uout=300 V。按图4模型建模,仿真波形如图5、图6所示。其中,图5为输入电压、电流的波形,图6为输出电压的波形。

  从图5可以看出,输入电压和输入电流进入稳态后,输入电压和输入电流相位几乎一致,输入电流也几乎是正弦波。整个仿真时间段内的功率因数约为0.997。从图6可看出,输出电压随着仿真时间的进行,逐渐趋于稳定状态,输出电压在300 V上下波动,符合电路设计要求。

  5 结 语

  这里讨论了应用较为成熟的单相Boost PFC电路的不足,介绍一种新型单相交流斩波功率因数校正电路,分析了其工作原理,并给出了仿真波形。结果表明,输人电流具有很高的品质因数,基本为标准的正弦波形,与输入电压相位相近,实现了高功率因数。与传统的电路相比,能减少系统的功耗,提高系统工作的可靠性,而取得相同的控制效果。仿真结果验证了方案的可行性。方案中的交流斩波电路除了采用Boost型和Buck型外,也可采用其他的功率变换电路。

关键字:PFC  Matlab  Boost  Buck 编辑:金海 引用地址:基于Matlab的交流斩波型PFC电路仿真研究

上一篇:飞兆半导体MicroFET™采用薄型封装
下一篇:泰科电子推出全新CORCOM DB系列电源接入滤波器

推荐阅读最新更新时间:2023-10-18 14:51

详解PFC(功率因素校正)及主被动PFC分析对比
  1、什么是功率因数校正(PFC)?   功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因数可以衡量电力被有效利用的程度, 当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型, 使其与直流电电压波型尽可能一致,让功率因数趋近于。 这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。
[电源管理]
Matlab软件增加Keysight示波器功能
  Keysight科技公司宣布,为一些示波器新增频域分析(FDA)选件。据介绍,该选件允许用户在频域扩展示波器的分析能力,该软件带来了一系列Matlab的工具,进一步提高Keysight的分析能力,适用于实时示波器的用户可扩展的频谱/频域分析。   FDA选件可在Keysight的Infiniium和InfiniiVision系列示波器中使用,利用该选件,工程师可使用示波器捕获实时信号,并显示信号在频域中的情况,同时还可执行关键的频域测量。选件内含用户可扩展的源代码,此外,Keysight提供了大量的Matlab软件工具,这些工具可进一步延伸应用软件功能,充分满足目前和未来的测试需求。   据悉,FDA选件
[测试测量]
<font color='red'>Matlab</font>软件增加Keysight示波器功能
全国大学生数学建模竞赛中,哈工大被禁用了Matlab
今年6月,由于受到实体清单影响,哈工大和哈工程被MathWorks禁止使用MATLAB。 近日,在全国大学生数学建模竞赛中,组委会初步认定哈工大参赛队伍不能使用MATLAB。这也意味着,在同一场竞赛中,哈工大将处于劣势。 6月17号,哈工大也发布了此次2020年全国大学生数学建模竞赛的报名通知,通知要求参赛队伍,务必认真阅读和理解《全国大学生数学建模竞赛章程和参赛规则(2019年修订稿)》,严格按照相关要求参赛。 值得一提的是,MathWorks(中国)还是全国大学生建模竞赛的赞助商之一。
[手机便携]
Buck直流变换器的滑模变结构控制研究
滑模变结构控制VSS(Variable-Structure Control System with sliding Modes),是一种非线性理论,对具有不确定动态特性的非线性系统而言,这种控制策略能使系统沿设计的“滑动模态”轨迹运动。该结构具有算法简单、对模型要求低、闭环系统对干扰信号以及控制对象本身的摄动鲁棒性强等特点 。近十年来,已得到控制界的广泛关注及实际应用 。 电力电子开关变换器的电路本质是离散、耦合的、动态的非线性系统,现在大部分开关变换器采用线性化的控制技术,控制规律采用PI控制。但PI控制对系统参数变化比较敏感,特别是开关变换器带非线性负载时响应速度慢,波形易发生畸变 。随着人们对开关变换器性能的要求逐渐提高
[工业控制]
<font color='red'>Buck</font>直流变换器的滑模变结构控制研究
学习LabVIEW(十)——关于Matlab的eps函数(十三)
关于Matlab的eps函数的实现原理,我以前写过十几篇短文了。其中最接近官方的版本可以参考 《关于Matlab的eps函数(十) MATLAB Coder生成的C代码》 。那时使用了MATLAB的Coder直接生成了一份eps的C语言版本,应该就是官方的实现方式了。 为什么这么关注eps函数?因为对于数值分析而言,eps是非常重要的,它展示了基于IEEE754浮点数的一个基本属性:相对浮点精度。然而,尽管eps如此重要,能够说清楚eps运算方法的人寥寥无几。现代社会,人人都要会编程,然而如果只是接受了普通的编程入门学习,没有像计算机专业科班出身的那群人那样花了好多好多的学时学习数值分析的话,就会倾向于将计算机中
[测试测量]
基于LED照明电源的单级PFC高频变压器设计详细步骤
由于LED照明电源要求:民用照明PF值必需大于0.7,商业照明必需大于0.9。对于10~70W的LED驱动电源,一般采用单级PFC来设计。即节省空间又节约成本。接下来我们来探讨一下单级PFC高频变压器设计。 以一个60W的实例来进行讲解: 输入条件: 电压范围:176~265Vac 50/60Hz PF 0.95 THD 25% 效率ef〉0.87 输出条件: 输出电压:48V 输出电流:1.28A 第一步:选择ic 和磁芯: Ic用士兰的SA7527,输出带准谐振,效率做到0.87应该没有问题。 按功率来选择磁芯,根据以下公式: Po=100*Fs*Ve
[电源管理]
基于LED照明电源的单级<font color='red'>PFC</font>高频变压器设计详细步骤
Buck光伏逆变器方案如何实现并网控制?
1.引言 太阳能是一种不受污染的能源,是人们一直研究的热点,更希望提高它的电能转化效率,光伏并网 逆变器 正是光伏利用的研究重点。光伏并网逆变器其拓扑结构按照变压器分为:高频变压器、工频变压器、无变压器。高频变压器体积小,重量轻,效率高,但控制起来较为复杂;工频变压器体积大,重量沉,结构简单;为了提高光伏并网系统的效率并降低成本,在没有特殊要求的情况下可以采用无变压器型的拓扑结构。 但是,由于没有变压器,输入输出没有电气隔离,光伏模块的串并联构成的光伏阵列对地的寄生电容变大,而且该电容受外界环境影响较大,由此产生的共模电流将会很大,对于漏电流的研究,现已有多种解决方案:当全桥逆变器采用单极性调制方式时,存在一开关频率脉动的共模电压
[电源管理]
双<font color='red'>Buck</font>光伏逆变器方案如何实现并网控制?
三相双开关四线PFC电路CCM控制策略的研究
APFC(active power factor correction)技术就是用有源开关器件取代整流电路中的无源器件或在整流器与负载之间增加一个功率变换器,将整流输入电流补偿成与电网电压同相的正弦波,消除谐波及无功电流,提高了电网功率因数和电能利用率。从解耦的理论来看,三相PFC技术可以分成不解耦三相PFC、部分解耦三相PFC以及完全解耦三相PFC三类。全解耦的三相PFC,如6开关全桥电路,具有优越的性能,但是控制算法复杂,成本高。单开关的三相boost升压型PFC电路工作在DCM模式下,属于不解耦三相PFC,由于它的成本低,控制容易而得到广泛应用,但是开关器件电压应力大,电源容量难以提高,只适用于小功率场合。部分解耦的三相
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved