燃料电池车用大功率DC/DC变换器电磁兼容

最新更新时间:2010-01-06来源: 电子产品世界 关键字:DC/DC  燃料电池  电磁兼容 手机看文章 扫描二维码
随时随地手机看文章

      引言

  目前,燃料电池电动汽车(FCEV)成为我国汽车科技创新主攻方向。燃料电池电动汽车动力系统主要由燃料电池发动机,DC/DC变换器,蓄电池,电机控制器(变频器)及电机,整车控制器,数据采集系统及CAN总线组成,如图1所示。其中DC/DC变换器可以对燃料电池的输出进行控制及能量的传递与转换,成为燃料电池电动汽车关键零部件之一。在燃料电池电动汽车运行过程中,DC/DC变换器所处的电磁环境十分复杂,各种形式的电磁干扰很多,严重影响了DC/DC变换器的正常运行。因此,研究FCEV用DC/DC变换器的电磁兼容性对DC/DC变换器乃至燃料电池电动汽车的可靠运行具有重要意义。

  大功率DC/DC变换器主要干扰源及电磁兼容设计

  FCEV用DC/DC变换器是大功率变换装置,其电磁兼容性在整个FCEV电磁环境中具有重要影响。FCEV用DC/DC变换器工作时对外界产生强大的电磁干扰,不仅对整个FCEV系统造成干扰,而且也会影响DC/DC变换器自身控制系统的正常工作。因此为了提高整个FCEV系统性能,必须对FCEV用DC/DC变换器的电磁兼容性进行研究,对其产生的电磁干扰(EMI)进行有效的抑制。

  大功率DC/DC变换器主要干扰源

  FCEV用DC/DC变换器的功率一般比较大,通常选择IGBT为功率开关管。功率开关管IGBT工作过程中产生高的du/dt和di/dt以及浪涌电流和尖峰电压[1],这是FCEV用大功率DC/DC变换器产生电磁干扰最根本的原因。另外功率开关管开通和关断瞬间,由于分布电感和分布电容的存在,电感电流容易发生高频振荡,这些因素都会产生强大的电磁干扰,这在FCEV用大功率DC/DC变换器中表现的尤为明显。这种电磁干扰严重影响整车控制器与CAN通信,导致CAN通讯频繁报错,无法正常通讯。CAN通讯受干扰后的传输波形如图2(a)所示。从图中可以明显看到,变换器开关噪音叠加在CAN通讯脉冲上,并且幅度很大。此外,严重的电磁干扰也会使大功率DC/DC变换器输出纹波过大,纹波过大直接影响大功率DC/DC变换器的性能[2]。图2(b)是用示波器采集到的变换器未经滤波处理的输出电压波形,从图中可以看到,输出电压上叠加了大量的开关噪音。

  大功率DC/DC变换器电磁干扰的抑制措施

  目前,抑制大功率DC/DC变换器电磁干扰的主要措施有减小干扰源的电磁干扰强度、切断电磁干扰传播途径、敏感元器件合理布局以及屏蔽和信号接地设计等。

  ● 减小干扰源的电磁干扰强度

  大功率DC/DC变换器产生电磁干扰的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率(du/dt和di/dt)。最常用的方法就是增加吸收电路[3],吸收电路能够抑制电磁干扰,其基本原理就是开关管关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。软开关柔性换流技术是近年来研究的热点[4],在FCEV用大功率DC/DC变换器中,采用无源谐振软开关柔性换流技术,可以大大降低开关过程中的du/dt和di/dt,不仅减小了开关损耗,而且还大大降低了电磁干扰。另外通过优化功率开关管IGBT驱动参数,合理选择功率开关管IGBT的驱动电压和栅极驱动电阻,也可以降低大功率DC/DC变换器电磁干扰。

  ● 切断电磁干扰传输途径

  FCEV用大功率DC/DC变换器产生的电磁干扰以传导干扰为主。目前最常用的方法就是在DC/DC变换器输入和输出端加装滤波电容器。如图3,为了减小FCEV用大功率DC/DC变换器对CAN通讯的干扰,在变换器输入输出端加适量的接地电容,CAN通讯波形得到有效改善。

  在FCEV用大功率DC/DC变换器中,输出电压或电流纹波是电源的重要指标。图4在大功率DC/DC变换器的输出端连接CLC滤波器后,变换器输出电压波形平稳,开关噪音减小,滤波效果十分明显。

  此外,在FCEV用大功率DC /DC变换器中开关管IGBT以十几千赫的频率开通和关断,电路中可能产生高次谐波电流,影响燃料电池的输出电压。因此DC/DC变换器输入和输出端通常并联电容(电解电容与无感电容并联)。无感电容可以滤除线路中由于谐振而产生的高频辐射干扰,而电解电容用来稳定燃料电池输出电压及降低辐射强度,同时减小DC/DC变换器输出电压纹波[5,6]。

      ● 敏感元器件合理布局

  FCEV用大功率DC/DC变换器中包含很多敏感元器件(比如电流霍尔传感器),这些敏感元器件对电磁干扰非常敏感。在FCEV用大功率DC/DC变换器主电路实际布局中,通常将敏感元器件布局在离功率开关管IGBT、续流二极管和高频变压器尽量远的地方、同时将信号线绞合并缩短布线距离,这样可以大大降低电流信号的噪音,提高系统的控制性能。同时,在FCEV用大功率DC/DC变换器布线方面,也要尽量将敏感信号线路远离功率开关管IGBT、续流二极管和高频变压器等强干扰源。同时,不能与高压交流信号和高频脉冲信号放置在一起,应保证适当的距离。

  ● 屏蔽和信号接地设计

  在燃料电池电动汽车中,大功率DC /DC变换器和其他控制电路、电机控制器等设备安置在一起,相互之间要辐射电磁能量,通常采用外壳屏蔽和缝隙屏蔽结合的屏蔽方式来抑制辐射干扰[7]。此外,信号接地[8]也可以消除外界或其他设备对FCEV用大功率DC/DC变换器的干扰,其关键是选择恰当的电路公共参考点以及接地线路的合理布局。

  大功率DC/DC变换器控制电路板抗干扰设计

  控制电路是大功率DC/DC变换器很重要的组成部分之一,良好的电路板设计可以大大提高电路板的抗干扰性。

  大功率DC/DC变换器控制电路主要由电源模块、采样信号、通讯信号以及驱动模块组成,为防止相互间信号干扰,在设计电路的时候将其隔离,如图5所示。

  在FCEV用大功率DC/DC变换器控制电路中,电源模块通常采用的是隔离型DC/DC模块,实现了电源输入端和输出端的电气隔离。采样信号隔离包括电流采样隔离和电压采样隔离。通讯信号隔离采用光电耦合器HCPL0600来实现了CAN总线输入输出信号的光电隔离。FCEV用DC/DC变换器输出功率较大,所以选用IGBT为功率开关管,而IGBT不同规格对应不同的驱动隔离方法。一般小功率IGBT采用TLP250驱动隔离,中等功率IGBT驱动多采用EXB841/840系列驱动隔离模块,而大功率或超大功率IGBT可采用2SD315A模块来实现驱动隔离。实践证明,将各个功能模块隔离,可以大大降低控制电路各个模块之间的相互干扰,保证了信号传递的可靠性及信号处理的准确性。

  大功率DC/DC变换器软件程序抗干扰设计

  大功率DC/DC变换器通常采用DSP控制,软件程序的抗干扰性设计同样非常重要。大功率DC/DC变换器软件抗干扰主要从两个方面来考虑:DSP抗干扰技术和软件滤波抗干扰技术,前者主要是抵御因干扰造成的程序“跑飞”,后者主要是消除信号中的干扰以提高系统精度。

  DSP抗干扰技术

  在FCEV用大功率DC/DC变换器的运行中,一旦控制系统的DSP受干扰,将会导致非常严重的后果,甚至使整个燃料电池电动汽车动力系统瘫痪,所以在设计实际系统时,均考虑万一出现干扰时,DSP系统自身的抵御措施。

  为了提高DSP的抗干扰性,在新型DSP控制器(如TMS320LF2407A)内部集成了看门狗定时器模块(WDT)[9],用于程序运行监视,是一种软硬件结合的抗程序跑飞措施。WDT硬件主体是一个用于产生定时T的计数器或单稳触发器,该计数器或单稳触发器基本独立运行,其定时输出端接至DSP的复位线,而其定时清零则由DSP软件控制。

  在正常情况下,程序启动WDT后,并在一定时时间T内将其清零复位,这样WDT的定时溢出就不会发生,如同睡眠一般不起任何作用。在受到干扰的异常情况下,CPU时序逻辑被破坏,程序执行混乱,不可能周期性地将WDT清零,这样当WDT的定时溢出时,其输出使DSP系统复位,CPU摆脱因一时干扰而陷入的瘫痪状态。

  软件滤波技术

  本文采用软件滤波技术对FCEV用大功率DC/DC变换器的采样数据进行处理。大功率DC/DC变换器将采集到的模拟量经过滤波后送至DSP控制器的A/D转换通道,通过软件编程启动A/D转换,将取得的采样值存入A/D内置寄存器中。

  DSP周围的干扰信号多呈毛刺形状,作用时间比较短。DSP对模拟量进行采样时,可对同一模拟量多次进行A/D转换,并将多次采样值暂存在内部数据区中。当多次采样结束后,采用数据平滑滤波算法和多次采样求均值的方法进行数据处理,这样可以增强软件程序抗干扰性,提高数据采样的准确度和精度。

  结语

  本文从大功率DC/DC变换器主要电磁干扰源及抑制措施、控制电路板的信号隔离以及软件程序的抗干扰设计三个方面对FCEV用大功率DC/DC变换器的电磁兼容性进行了研究,有效的解决了FCEV用大功率DC/DC变换器电磁干扰问题。采用上述电磁兼容设计的FCEV用大功率DC/DC变换器现已成功应用在由清华大学研制的燃料电池城市客车上,各项技术指标均满足整车使用要求,运行效果良好。

关键字:DC/DC  燃料电池  电磁兼容 编辑:金海 引用地址:燃料电池车用大功率DC/DC变换器电磁兼容

上一篇:低压大电流直直变换器的设计
下一篇:瑞萨科技发布与DrMOS相兼容的MOSFET

推荐阅读最新更新时间:2023-10-18 14:52

STM32 ADC注入通道的使用
通过ADC注入通道的使用,可以实时获取4个GPIO输入的AD采样值,下面看具体的代码。 芯片:STM32F205VCT6 STEP1:初始化GPIO void GPIO_Configuration ( void ) { //GPIO -PC0 PC1 PC2 PC3 -ADC3 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_Pu
[单片机]
Mouser 率先供应16 位 ADC 评估板
2014 年 6 月 20 日 – 贸泽电子 (Mouser Electronics) 率先供应 Analog Devices 的 AD9652-310EBZ 双通道 16 位模数转换器 (ADC) 评估板。AD9652 ADC具有 310 MSPS 的数据采样速度和高速流水线架构,并可提供同类产品中最佳的噪声和动态范围性能。 Mouser Electronics 供应的此新款 Analog Devices AD9652-310EBZ 双通道 ADC 评估板是使用 AD9652 ADC 进行设计的必选产品,它设计用于支持需要在宽频范围内具备优异动态范围的各种高速信号采样应用。AD9652 具有 465 MHz 的高速信号采
[模拟电子]
电感型升压DC/DC转换器的使用常识
  什么是电感型升压DC/DC转换器?   如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。      图1 简化的电感型DC-DC转换器电路   决定电感型升压的DC-DC转换器输出电压的因素是什么?   在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流
[电源管理]
电感型升压<font color='red'>DC</font>/<font color='red'>DC</font>转换器的使用常识
静态电流仅为 1.3µA 的 15V、200mA 同步降压-升压型 DC/DC 转换器
凌力尔特公司(Linear Technology Corporation) 推出同步降压-升压型转换器   LTC3129,该器件提供高达200mA 的连续输出电流,可使用多种输入电源,包括单节或多节电池以及太阳能电池板和超级电容器。该器件在2.42V 至15V 输入范围和1.4V 至15.75V 输出范围内工作,在输入高于、低于或等于输出时提供稳定输出。LTC3129 采用的低噪声降压-升压型拓扑在所有工作模式之间提供不间断转换,从而使该器件非常适合必须保持恒定输出电压的应用(即使输入电源电压高于、等于或低于输出电压时也不例外)。该器件还包括可编程最大功率点控制(MPPC) 功能,可确保从光伏电池等非理想电源抽取最大功率。
[电源管理]
静态电流仅为 1.3µA 的 15V、200mA 同步降压-升压型 <font color='red'>DC</font>/<font color='red'>DC</font> 转换器
一种基于DC/DC软开关技术的充电机在铁路辅助电源系统中的应用
作者Email: flyfang2008@sohu.com 摘要:本文首先介绍了软开关和硬开关的基本知识,然后给出电气列车辅助电源最新10KVA充电机的主电路设计,介绍并分析了此种新型充电机软开关的实现方法和设计注意事项,此产品已经通过国家铁道部的各项试验,已运行于即将正式开通的青藏线的各个新型列车中。 关键词:充电机,软开关,硬开关,辅助电源 0. 引言 现在电力电子的发展趋势朝着小型化、轻量化方向发展、对效率和电磁兼容也有了更高的要求。随着电力电子装置的高频化的发展趋势,滤波器、变压器体积和重量减小,电力电子装置小型化、轻量化。但同时导致开关损耗增加,电磁干扰增大。而基于软开关技术的谐振变换器正是基于这样的趋势而发展起来的:可
[电源管理]
IDC预测2019年手机市场:今年全球5G手机出货量较少
集微网消息(文/ANSON),近日市场调研机构IDC发布了2019年及以后手机市场的预测,报告中提到今年全球智能手机出货量将再度出现负增长,其中5G手机出货量仅占了手机出货总量的0.5%。 IDC的预测是引用了最新版的《全球季度手机跟踪报告(Worldwide Quarterly Mobile Phone Tracker)》的数据。IDC认为,5G手机的普及难以在今年完成,IDC高级分析师桑吉提卡斯里瓦斯塔拉(Sangeetika Srivastava)表示:“毫无疑问2019年将会是智能手机市场迎来革新的一年。” 另一方面,在短期内4G手机的出货量不会发生过于剧烈的变化。今年内4G手机的市场份额依然将高达95.4%
[手机便携]
I<font color='red'>DC</font>预测2019年手机市场:今年全球5G手机出货量较少
丰田拟到2020年将燃料电池成本削减99%
      日前,丰田集团研发总裁Soichiro Okudaira接受《欧洲汽车新闻》采访时表示,丰田将在2015年上市新一代燃料电池车,该车燃料电池系统造价将只有2007年的二十分之一,到2020年甚至将进一步减至百分之一     2007年丰田生产燃料电池验证车时,每套燃料电池系统成本接近750,000欧元,如今2015年新燃料电池车上市时,电池系统造价将控制在500万日元以下,约合35,900欧元,或者相当于新燃料电池车整车成本(72,000欧元)的一半左右。新车将以今年11月东京车展上亮相的FCV概念车为蓝本,预计届时年产销量在5,000至10,000辆。     此前盖世汽车网曾编译过外媒类似的报
[应用]
科学家研究出微型核燃料电池,可支持宇航员在月球上长期生活
9 月 4 日消息,如果人类在月球上建立永久基地,将需要可靠的能源来维持那里的生活。现在,英国科学家开发出一种燃料,可以让宇航员在月球上长时间生活。 英国班戈大学的研究团队设计出了罂粟籽大小的核燃料电池,可以用来产生维持生命生存所需的能量。该校核能未来研究所的西蒙・米德尔伯格教授(Simon Middleburgh)说,这项工作充满了挑战,“但也很有趣”。 月球被许多人称为通往火星的门户,那里有许多现代技术所需的宝贵资源。人们希望它可以作为一个跳板,帮助人类到达更远的星球。美国宇航局(NASA)领导的阿尔忒弥斯计划,希望在 2030 年左右在月球上建立前哨基地。 米德尔伯格教授表示,研究小组希望“在未来几个月内”对这种核燃料电池进
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved