0 引言
高频开关电源的功率因数是非常重要的一个参数,直接决定着产品是否符合通用的谐波标准,衡量着产品的优劣。为了减小谐波、提高功率因数,高频开关电源普遍采用了功率因数校正电路来改善电流波形。为了在设计阶段就了解高频开关电源的功率因数值,方便进行功率因数校正电路参数的优化,就需要进行功率因数的测量。本文基于Matlab仿真软件设计并给出了两种功率因数测量的电路,用这两种电路对RC正弦电路进行了功率因数仿真测量和计算验证;并把这两种仿真测量电路应用于三相大功率恒流充电电源的功率因数仿真测量中,最后通过实验验证了其可靠性。
1 功率因数的定义
功率因数用于衡量输入有功功率与输入视在功率中的比例,用公式表示为:功率因数越高,输入有功功率所占的比重越大;当功率因数为l时,输入的功率全部被作为有功功率吸收。
在正弦系统中,P全部是基波分量所做的有功,S也全部是基波分量的视在功率。但是在非正弦系统中,P和S都不是基波分量,而是所有电压、电流的直流分量和各次谐波分量所做的功,功率因数的定义式可以表示如式(1):
其中,Uk、Ik分别为第k次谐波电压电流的有效值。
当输入侧无损耗时(即输入电压波形不失真),则式(1)可以简化成式(2):
2 功率因数仿真测量的两种方法
根据式(1),可以设计出第一种功率因数测量电路。如图l所示。其中,u和i相电压和相电流。
在图2中,用了三套图1所示测量模型,构成三相系统功率因数仿真模型,并使得P=PA+PB+PC,S=UA·IA+UB·IB+UC·IC代入计算,最终得到功率因数值。
根据式(2),可以设计出第二种功率因数测量电路,如图3所示。其中,u和i相电压和相电流。
其中,f(μ)=1/sqrt(μ*μ+1),K=pi/180。这种方法是先求取THD值,再通过f(μ)计算出基波系数μ,然后再提取输入电压电流的角度来计算位移系数λ,最后再把μ与λ目乘,得到PF。
在图4中,用了三套图3所示测量模型,构成三相系统功率因数仿真模型,分别求得输出值再进行平均,最终可以得到功率因数值。
3 计算验证
为了验证这两种测量电路的正确性,将这两种测量电路用于测量RC正弦电路的功率因数。如图5所示。
图5中电源频率为220V/50Hz,R=5.1kΩ,C=lμF。这时可以算得等效阻抗为:
在线性电路中,基波系数μ为l,所以功率因数PF为0.848。
将测量电路用于图5电路功率因数的测量,可以分别得到如图6和图7所示功率因数。其中图6为第一种测量方法测得的功率因数;图7为第二种测量方法测得的功率因数(横坐标为时间t轴)。
从图6和图7可以看到:采用两种测量电路测得的功率因数都分别为0.848。测量结果与计算结果一致。
4 实验验证
以未进行功率因数校正的42kJ/S数字式高频高压恒流充电电源为实验对象,采用这两种仿真测量方法得到的功率因数如图8、9所示。其中图8为第一种测量方法测得的功率因数;图9为第二种测量方法测得的功率因数(横坐标为时间t轴):
采用IDEAL 6l一806电能分析仪实测的功率因数值如表1所示。波形如图10所示:
由此可见,在三相大功率电源系统中,仿真测得的功率因数与采用电能分析仪实际测量的功率因数值与仿真测量稳定后(方框内显示)的数值误差很小,其误差主要由实际电路中存在的线路电感及其分布参数产生。
5 结束语
从计算结果和实际测量结果可以看到:除去系统刚开始仿真时的不稳定状态外,这两种功率仿真测量电路的测量结果与实际计算结果和实际测量结果相符合。由此可以确定这两种测量电路的可靠性。这两种测量电路可以用来测量基于Matlab仿真中单相或三相系统的功率因数,其测量结果准确率高。
上一篇:基于高性能单片机的功率直流开关电源的设计
下一篇:基于PWM控制的开关电源系统仿真研究
推荐阅读最新更新时间:2023-10-18 14:54
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- OpenAI呼吁建立“北美人工智能联盟” 好与中国竞争
- 传OpenAI即将推出新款智能体 能为用户自动执行任务
- 尼得科智动率先推出两轮车用电动离合器ECU
- ASML在2024 年投资者日会议上就市场机遇提供最新看法
- AMD将裁员4%,以在人工智能芯片领域争取更强的市场地位
- Arm:以高效计算平台为核心,内外协力共筑可持续未来
- NEC收获新超算订单:英特尔CPU+AMD加速器+英伟达交换机
- 高通推出其首款 RISC-V 架构可编程连接模组 QCC74xM,支持 Wi-Fi 6 等协议
- 消息称内存原厂考虑 HBM4 采用无助焊剂键合,进一步降低层间间隙
- 随时随地享受大屏幕游戏:让便携式 4K 超高清 240Hz 游戏投影仪成为现实