三相双开关四线PFC电路CCM控制策略的研究

最新更新时间:2010-08-13来源: 现代电子技术 关键字:三相双开关  PFC  CCM  控制方法 手机看文章 扫描二维码
随时随地手机看文章

  APFC(acTIve Power factor correction)技术就是用有源开关器件取代整流电路中的无源器件或在整流器与负载之间增加一个功率变换器,将整流输入电流补偿成与电网电压同相的正弦波,消除谐波及无功电流,提高了电网功率因数和电能利用率。从解耦的理论来看,三相PFC技术可以分成不解耦三相PFC、部分解耦三相PFC以及完全解耦三相PFC三类。全解耦的三相PFC,如6开关全桥电路,具有优越的性能,但是控制算法复杂,成本高。单开关的三相boost升压型PFC电路工作在DCM模式下,属于不解耦三相PFC,由于它的成本低,控制容易而得到广泛应用,但是开关器件电压应力大,电源容量难以提高,只适用于小功率场合。部分解耦的三相PFC电路具有低成本、高效的特点,具有广阔的应用前景。三相双开关电路就是典型的部分解耦PFC电路。本文针对该电路的工作原理和控制策略进行了仿真和实验。

  1 三相双开关PFC电路CCM下的工作原理

  1.1 主电路结构

  电路将三相交流电的中性线与2个串联开关管S1,S2的中点以及2个串联电容C1,C2的中点相连接,构成三电平(正、负电压和零电压)结构,2个串联电容分别并联平衡电阻R1,R2,使上、下半桥作用于电容C1,C2的输出电压相等。电路结构如图1所示。

电路结构

  由于中性线的存在,上下半桥相互独立,形成部分解耦的基础,并且开关器件承受的电压只有输出电压的1/2,降低了对开关管的选型要求。在此基础上提出一些新的双开关拓扑结构,但结构复杂,难以控制。

  1.2 过程分析

  由上述分析,上、下半桥可作为独立结构分析。以上半桥为例,等效电路图如图2所示。

等效电路图

  由三相电压的对称特性,每2π/3的区间里,只有一相正相电压最大,如果能使每相的瞬时电流在2π/3的区间里跟踪其最大相电压,即可实现最大程度的电流校正。根据这样的思路,现分析[π/6~5π/6]中a相电流的变化,因为这段区间Ua最大,可分3个阶段分析。

  第1阶段[π/6~π/3],Ua>Uc>O,在t0时刻开通S1,a相和c相电感同时充电,导通时间ton,这段时间的等效电路如图3所示。由于开关器件载波频率远大于工频,因此对于S1开关周期电路分析可将三相电源等效为对应的直流电压源。基于此假设可知,载波频率越高,电流波形越接近推理结果。此时的a相电流参见式(1):

公式

  式中:ILc(t0)为c相电流初值。

  在t1时刻关断S1,电压源和储能电感共同向负载提供能量,电感电流下降,由于Uc较小,iLc的下降率更大。该段时间的等效电路如图4所示。此时a相的电感电流参见式(3):

公式

  式中:ILa(t1)为a相电流初值,U01为上半桥输出电压。

  同理,c相电流参见式(4):

公式

  式中:ILc(t1)为c相电流初值。

  由以上公式推理可得iLa和iLb的波形如图5所示。由于电流的连续模式,a相电感放电阶段不会回零,且变化斜率由相电压幅值决定,如式(1)、式(3)所示。由于单相电路等效为Boost电路,当电路运行在CCM模式,占空比计算如式(5)所示:

公式

  式中:Uo1是上半桥的输出电压。

等效电路

iLa和iLb的波形

  第2阶段[π/3~2π/3],正相电流只有a相,所以开关的通断只会引起iLa的变化。

  第3阶段[2π/3~5π/6],a相和b相电压为正,开关的通断会引起iLa,iLb的变化。电路分析过程均和第一阶段类似。通过上面的分析可知。在[π/6~5π/6]控制a相的电流跟随其最大相电压,既可以使a相的电流得到最大的补偿,又可以使相邻相的电流得到一定补偿。这种控制方法简单,可行性高,但由于电路处于部分解耦状态,在第l(或3)阶段无法对c(或b)相进行独立控制,补偿效果并不理想,如何优化控制以减小c(或b)电流谐波仍有待解决。

  2 CCM模式下的控制和仿真

  2.1 控制分析

  按电感电流是否连续,APFC电路的工作模式可以分为连续导电模式(CCM)、断续导电模式(DCM)和介于两者之间的临界断续导电模式(DCM boundary)。该电路可以工作在DCM和CCM模式下。工作在DCM模式下,THD仍然较大。本文使用平均电流控制技术,由于平均电流控制电路具有体积小,重量轻,系统噪声小,稳定性高等优点,因而得到了广泛的应用。总控制框图如图6所示。

总控制框

  结合第1节的分析,它的基本控制原理是:采用双闭环控制策略,即电压外环和电流内环相结合。电压外环的任务是采样输出电压和给定比较,差值经过PI调节和三相交流电压的最大(最小)值相乘作为相位给定,再取样实际输入的三相电流的最大(最小)值,两者的差值和三角载波比较产生驱动信号,驱动MOS管。上、下桥臂的MOS管完全独立,互不影响。这样控制的好处是:在最大程度上(2π/3的区间里)对每相进行最优控制,控制算法简单,采用数字化的控制方法,成本低。性价比高。实际的校正过程是(以正半桥为例):当输出大于400 V,误差为正,经过PI调节,误差被正向放大,经乘法器得到与输入电压同相位的单位正弦电流也相应增大,与实际电流的差值增加,使PWM的占空比增大,输出电压减小。

  2.2 仿真分析

  本文的仿真是基于Matlab/Simulink平台,应用其中SimPowerSystems模块中的元件搭建而成。应用Matlab/Simulink不需要再建立各种模块的模型,可以快速验证系统的可行性和控制算法的有效性。电路的仿真参数为:输入电压:三相交流380 V;输出电压:800 V;开关频率为:10 kHz;Boost电感值:300μH;输出滤波电容:470μF;平衡电阻:100 kΩ;负载电阻:100 Ω;输出功率:6.4 kW。上桥臂的控制模块的仿真电路需要注意:采样三相电压的瞬时值作为给定一般在整流后,但由于电感、电容的存在,使整流后的波形并不是标准的馒头波,所以采整流前端的三相电压作为给定;三角载波模块取自plecs工具箱,设置较为容易,载波频率为10 kHz;使用加减模块和滞环模块组合,通过设置环宽为0,可以实现电压(电流)比较器的功能;下桥臂的电压给定取自负半桥最小电压的绝对值(不是最大电压)。在此基础上,仿真得到的波形如图7所示。观察a相和c相电流波形可知,电路工作在CCM模式下,在[π/6~5π/6],a相电流得到了最大补偿;而在[O~π/6],a相的电流补偿效果是比较差的,因为此时的控制量是c相电流,c相电流得到最大补偿;同理在[5π/6~π],b相电流得到最大补偿,就是说补偿了c相电流,却破坏了a相的电流波形。其中a相电流THD=13.76 %,其中3次和5次谐波的幅值较大,可以考虑用谐波注入法来消除3次与5次谐波。半桥电压的平均值为400.2 V,负载电压平均值为800 V,从仿真结果看,控制的基本思路是正确的。

仿真得到的波形

  3 实验分析

  该实验的控制芯片使用DSP2407,其内部的事件管理器EV和A/D模块,资源丰富。驱动芯片使用M57962L,它集成过流保护电路和过流保护输出端子。本文实验的硬件控制框图如图8所示。

实验的硬件控制框图

  实现CCM控制的算法都是在DSP中完成的,外部硬件只需检测控制所需的8个信号,可见采用DSP所需的硬件电路较少,这使得控制系统的修改和维护变得相当容易和方便。实际波形和仿真结论基本吻合,如图9、图10所示。图中,在[0~π/6],a相电流的补偿效果最好;在[π/6~5π/6]和[5π/6~π],电流比较平,补偿的效果比较差,这是由部分解耦的特点决定的。

实际波形和仿真结论基本吻合

  4 结语

  本文提出了三相双开关PFC电路在CCM模式下的控制策略,分析了电路的工作原理,给出了该电路在开关周期内的波形和工作方程表达式,并且通过仿真和试验结果验证了电路分析的正确性。该电路结构简单,控制容易,成本低并且输入电流谐波低、功率因数高,适用于中、大功率应用场合。

关键字:三相双开关  PFC  CCM  控制方法 编辑:金海 引用地址:三相双开关四线PFC电路CCM控制策略的研究

上一篇:凌力尔特推出 SOT23 封装的电压基准 LT6654
下一篇:以太网供电技术特征及应用于转换器的设计

推荐阅读最新更新时间:2023-10-18 14:59

DC-DC变换器AVP控制方法的分析
摘要:随着电压调整模块(VRM)输入容量的越来越大和动态要求的越来越严格,适应降压(AVP)控制在VRM中的应用被人们重新认识。本文对AVR控制策略的有源法和无源法进行了理论分析,并采用一种新式检测方法实现AVP控制,并通过比较实验证实了AVP控制方法的优越性。 关键词:电压调整模块 降压控制 有源法 无源法 CPU和DSP对数据处理速度和容量的要求不断提高, 对电源模块的供电要求也就相应地提高了,主要体现在电源的输出电流大小及其变化率和输出电压峰-峰值上。采取的措施有多通道buck电路拓扑和良好的控制方法,如V2控制法和滞回控制法等,这样可以改善电源的稳态和动态性能、提高电源效率。但是对于更低的输出电压、更大的电流动态变化率,不
[电源管理]
STM32之Core Coupled Memory(CCM)内存
写在前面 今天在搞STM32F4时,用到了一部分特殊内存——CCM。搜了搜网上没多少介绍,索性自己查手册。 基本架构   废话少说,先看看这块内存特殊在哪里。官方的基本架构说明如下:   The main system consists of 32-bit multilayer AHB bus matrix that interconnects: Eight masters: – Cortex® -M4 with FPU core I-bus, D-bus and S-bus – DMA1 memory bus – DMA2 memory bus – DMA2 peripheral bus – Ethernet DMA b
[单片机]
PFC在反激照明驱动中的工作原理
随着照明技术的发展,LED走进了人们的生活,由于其节能环保、使用寿命长,很快获得了稳固的市场地位。但是如果要点亮LED,就需要恒定电流以及高功率因数。所以在LED的设计中,需要集成PFC单级反激式转换器。PFC为功率因数校正的缩写,是有效功率除以总耗电量(视在功率)的比值,它反应了电路当中 电力 被有效利用的程度。但是对一些LED新手来说,PFC方面的知识却是没有接触过的,本篇文章就介绍了反激式LED中的PFC原理,希望对各位有所帮助。 在反激拓扑结构当中,PSR(初级端调节)是一种最为快捷高效的电路设计,它通过使用具有初级端调节(PSR)的单级拓扑来实现。在图1中我们给出了高功率因数的单级PSR反激式LED驱动的原理图。
[电源管理]
<font color='red'>PFC</font>在反激照明驱动中的工作原理
微波检波信号增益控制方法
  本文采用微处理器MSP430F149控制带8位易失性存储器的四路SPI数字电位器MCP4351组成三级级联放大电路,实现了对微波检波信号放大增益的自动控制。此方法工作效率高,适合宽动态范围的增益控制。下边分别从硬件电路设计、软件设计思路及总体实现方法等方面进行分析。   1 增益自动控制系统框架设计   智能微波开关接收部分对接收到的微波检波器输出信号进行前置固定增益(增益约为1)放大以及滤波以后,通过三级程控放大电路放大,将信号幅值放大到要求的范围,再由后续电路进行解调和处理。放大器级联模型如图1所示。      为了适应宽动态范围的应用,放大器的增益控制必须足够的灵活。当输入幅值特别小的时候,放大电路要能够将小幅
[单片机]
微波检波信号增益<font color='red'>控制方法</font>
被动PFC恒流LED驱动器电路
被动PFC恒流LED驱动器电路: 18W、10V、1.8A输出, 185–265 VAC输入, 被动PFC反激式电源
[电源管理]
被动<font color='red'>PFC</font>恒流LED驱动器电路
图解:让saber仿真UC3854-PFC的兄弟们不再困惑
好多人在应用 saber 仿真 uc3854 时经常遇到问题,诸如找不到线性解等等。刚开始的时也是仿真失败,基于大家帮助和自己摸索,终于找到原因,现在发出来,希望对关注仿真人事有所帮助。 首先原理图要正确 整流后电压,电感电流,以及输出电压波形如图 启动时的大的峰值电流接近80A,因此应该注意避免电感器饱和的问题;比较有效的方法是,在整流桥和直流输出之间加一个二极管,在启动时可以将电感器短路,在稳态时,输出电压高于整流后的电压,二极管自然关断。 接二极管后,最大电流不超过6A,因此可以有效地避免电感因瞬间电流过大而饱和。由此,可以看出达到了功率因数校正的目的。 整流后电压电流波形对比图如图
[电源管理]
图解:让saber仿真UC3854-<font color='red'>PFC</font>的兄弟们不再困惑
离线式LED应用未必对LED驱动器构成挑战
  高亮度 LED 能降低功耗、具有很长的寿命以及更多益处,不断促进多种照明应用的发展,因此 LED市场持续加速增长就毫不意外了。根据 Strategies Unlimited 公司的研究,到 2010 年末,高亮度 LED 的市场规模达到了 82 亿美元,到 2015 年将增长到 202 亿美元,年复合增长率为 30.6%。在过去几年中,用来给显示器提供背光照明的 LED 一直是驱动 LED 市场增长的主要因素。不过,通用照明 LED 应用在商用和住宅市场吸引力越来越大,这也进一步加速了 LED 市场的增长。全球市场情报供应商 LEDinside 在研究报告中写道:“2010 年,商用高流明 LED 照明系统出现了巨大增长。这是
[电源管理]
离线式LED应用未必对LED驱动器构成挑战
基于提高数字无桥PFC拓扑的高性能电源设计性能分析
由于效率要求不断增长,许多电源制造商开始将注意力转向无桥功率因数校正(PFC)拓扑结构。一般而言,无桥PFC可以通过减少线路电流路径中半导体元器件的数目来降低传导损耗。尽管无桥PFC的概念已经提出了许多年,但因其实施难度和控制复杂程度,阻碍了它成为一种主流拓扑。 随着一些专为电源设计的低成本、高性能数字控制器上市,越来越多的电源公司开始为PFC设计选用这些新型数字控制器。相比传统的模拟控制器,数字控制器拥有许多优势,例如:可编程配置,非线性控制,较低器件数目以及最为重要的复杂功能实现能力(模拟方法通常难以实现)。 大多数现今的数字电源控制器(例如:TI的融合数字电源控制器UCD30xx)都提供了许多的集成电源控制外设和一个电源管理
[电源管理]
基于提高数字无桥<font color='red'>PFC</font>拓扑的高性能电源设计性能分析
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved