一种CMOS绿色模式AC/DC控制器振荡器电

最新更新时间:2010-08-31来源: 电子技术关键字:CMOS工艺  振荡器 手机看文章 扫描二维码
随时随地手机看文章

  本文以比较器为基本电路,采用恒流源充放电技术,设计了一种基于1.0μm CMOS工艺的锯齿波振荡电路,并对其各单元组成电路的设计进行了阐述。同时利用Cadence Hspice仿真工具对电路进行了仿真模拟,结果表明,锯齿波信号的线性度较好,同时电源电压在5.0 V左右时,信号振荡频率变化很小;在适当的电源电压和温度变化范围内,振荡电路的性能较好,可广泛应用在PWM等各种电子电路中。

  1 电压比较器

  在以往的比较器电路中,存在单级增益不高,并以牺牲输出电压范围来提高增益,进而不能达到满幅度输出,导致电路性能差。本文所设计的比较器电路如图1所示,采用三级放大,第一级是差分输入级将双端变单端输出,两只NMOS管作为电流源负载,第二级为CMOS共源放大器,第三级为推挽式CMOS单级放大器,即为普通CMOS反相器,由于CMOS反相器作为输出级,所以能达到满幅度输出。在设计中保证了放大器的MOS管在静态条件下处于饱和区,第二级、第三级保证静态时输出电压在电源电压中点,以保证后级CMOS反相器工作在高增益区。电压比较器在开环条件下工作,因此不需要考虑放大器闭环稳定工作的频率补偿问题。

比较器电路

  2 振荡器的工作模式

  恒流/恒压(CC/CV)充电是一种更快速充电方法,当开始充电时,CC/CV充电器首先施加一个等价于电池容量C的恒定电流。为防止在恒流充电周期中过充电,需要监视电池封装两端的电压。当电压上升到给定的终止电压时,电路切换到恒压源工作模式。即使电池封装两端的电压达到终止电压,但因为在ESR上存在电压降,所以实际的电池电压将低于终止电压。在恒流充电期间,电池能以接近其终止电压的高电流速率充电,且不会有任何被施加高电压和发生过充电的危险。

  经恒流充电后,电池的容量将达到其额定值的85%。在恒流周期结束后,充电器切换到恒压周期。在恒压周期,充电器通过监视充电电流决定是否结束充电。与恒压充电器一样,当充电电流减小到O.1C以下时,充电周期结束,恒流/恒压充电主要通过改变振荡器的工作模式来实现。

  间歇工作模式:也可称为跳周期控制模式(Burst Mode),是指当处于轻载或待机条件时,轻载时输出电压上升,反馈脚电压降低到一定值时MOSFET停止工作,输出电压降低到一定值时MOSFET导通,这个过程大量减少了MOSFET的开关动作,减少了开关损耗。由周期比PWM控制器时钟周期大的信号控制电路某一环节,使得PWM的输出脉冲周期性的有效或失效,这样即可实现恒定频率下通过减小开关次数,增大占空比来提高轻载和待机的效率。

  但是降频和Burst Mode方法在提高待机效率的同时,可能会带来一些问题,首先是频率降低导致输出电压纹波的增加,其次如果频率降至20 kHz以内,可能有音频噪音。

  图2为Burst Mode电压控制电路,当S43电平>C54(此时C54和电平C96相等为0.84 V),时,Burst_on信号为低电平,关断功率管;当S43

Burst Mode电压控制电路

  3 振荡器充放电电流设定电路

  振荡器的起振频率为12 kHz,随着INV的增大,振荡器的频率逐步增大到50 kHz,图3为INV控制下的频率图。随着INV的继续增大,振荡器的频率降到22 KHz,进入Burst Mode模式。

INV控制下的频率图

  振荡器的充放电电流由偏置电压控制产生的电流和INV控制产生的电流两部分组成,起振时因为INV太小,电流完全由固定电平值控制,当INV>300 mV,充放电电流随INV的增大而增大。

  仿真结果可以看出,起振时由于INV电压很小,充电电流固定在1.5μA,当反馈电压INV>0.7 V时,充电电流开始线性增大,振荡器的振荡频率随之增大。

  4 锯齿波电路的产生设计

  图4为锯齿波电路产生图,利用恒流源电路给电容充放电,使得电容NA41上的电压C38上升到比较器的高阈值限制电压S66时,使电容放电;电压C38降到比较器的低阈值限制电压时电容充电,如此反复形成锯齿波。

锯齿波电路产生图

  在OSC的设计上,采用了固定充放电电流的方式,在不改变OSC电容的前提下,在电路的设计上采用了两个锯齿波复合的方式,这样可以实现固定充放电电流下的频率调整。该电路的基本工作过程是:当C42充电到电压>C100时,C38开始充电,当C38上升到C58(C38的上限电压)时,C38、C42的放电开关打开,它们开始放电;C42放电的极限电压为C45,C38放电的极限电压为S66,在放电的过程中,若C42电压先降到C45,则需等待C38电压降到S66后C42才能再次充电,同时需注意的还有只有等到B42充电到电压>C100时,C38才能开始充电,这样与FB有关的电压C45就成为了调节两个OSC频率的关键。从上面的工作原理可以看出,C45和C100的大小关系直接决定了OSC的频率。若C45>C100,则OSC的频率完全是由C38的充放电组成;若C45C100;FB=1.3 V时,C45

Burst Mode模式下OSC的频率

CV模式下OSC的频率

  5 结束语

  本文所设计的振荡器可广泛应用在PWM等各种电子电路中,在实际应用中作为AC/DC控制器芯片的核心组成部分之一,已随AC/DC控制器流片并通过测试,转换效率>75%,待机功耗<150 mW,达到了绿色节能的需要。

关键字:CMOS工艺  振荡器 编辑:金海 引用地址: 一种CMOS绿色模式AC/DC控制器振荡器电

上一篇:凌力尔特推出电流模式 固定频率升压型DC/DC转换器
下一篇:反激变换器设计之初次级漏感

推荐阅读最新更新时间:2023-10-18 14:59

Fox扩展手表石英振荡器系列增添音叉功能
全球领先的频率控制解决方案供应商Fox Electronics 公司现已扩展其手表石英振荡器系列,推出带有全新音叉功能的产品。FX122系列产品的体积相比先前型款减小约 33%,尺寸仅为2.1mm x 1.3mm,具有极低的 0.6mm 侧高。新型的小尺寸 FX122 非常适合着重占位空间的便携和手持式设备。 这一新型表面安装 (SMD) FX122 器件具有32.768kHz 的频率,并针对标准 12.5pF 负载电容而优化,也可选用 9pF 的负载电容。在 25°C (77°F) 下,频率容差为 ±20PPM,在 -40°C 至 +85°C (-40°F至185°F) 的标准工作温度范围内,频率稳定度为 -0.04ppm
[模拟电子]
硅扩频振荡器在汽车电子产品中的应用
数字电子系统使我们的生活丰富多彩,但数字时钟信号也扮演着“反面角色”,即传导 噪声 源(通过电缆)或电磁辐射干扰( EMI )。由于潜在的噪声问题,电子产品需要经过相关标准的测试,以确保符合EMI标准。汽车电子产品除了存在EMI兼容性外,还要考虑其它诸多问题,为了简化设计,扩频(SS) 振荡器 逐渐成为汽车电子仪表、驾驶员与乘客辅助电子产品开发的关注焦点。 扩频振荡器在汽车电子设计中的优势 扩频技术能够很好地满足FCC规范和EMI兼容性的要求,EMI兼容性的好坏在很大程度上依赖于测量技术的通带指标。扩频振荡器从根本上解决了峰值能量高度集中的问题,这些能量被分布在噪声基底内,降低了系统对滤波和屏蔽的需求,同时也带来了其它一些
[应用]
一种新型数字温度测量电路的设计及实现
用传统的水银或酒精温度计来测量温度,不仅测量时间长、读数不方便、而且功能单一,已经不能满足人们在数字化时代的要求。本文提出了一种新型的数字式温度测量电路的设计方案,该方案集成了温度测量电路和实时日历时钟电路。   温度测量电路的测温范围在-20℃~50℃之间,分辨率为1℃,测温时间小于1秒。电路中采用凌特公司的电阻可编程振荡器LT1799来实现电阻值到频率的转换,然后根据预先存储在ROM中的参数值进行比较映射得到待测温度值。实时日历时钟电路能显示年、月、日、星期、时、分、秒七种时钟信号,用户可以对时间进行设定或修改。整个电路用Altera 公司的ACEX1K系列的FPGA进行了硬件仿真实现,电路设计灵活,便于修改。   
[模拟电子]
70MHz并联晶体振荡器电路
元器件选择:电容Cl为20p,C2为100p,C3、C7为820p,C4为56p,C5、C8为47p,C6为47μF/50V。电感Ll为22μH(色码电感),L2为0.3μH。电阻Rl为1.6kΩ,R2为1kΩ,R3为750Ω,R4为180Ω、1W,R5为1.3kΩ,R6为3kΩ,R7为360Ω,R8为470Ω,R9~R12为300Ω、2W。三极管VTl、VT2选3DG828,65≤β≤115。晶体SJT用JA98型-70MHz。继电器KM为JUC-1M。70MHz并联 晶体振荡器 电路:
[模拟电子]
70MHz并联晶体<font color='red'>振荡器</font>电路
IDT 推出全球首款超低功耗CMOS 振荡器
IDT 借助新的 3LG 系列硅差分振荡器巩固硅计时领域领导者地位,比晶体振荡器节省多达 75%  的功耗 拥有模拟和数字领域的优势技术、提供领先的混合信号半导体解决方案的供应商 IDT® 公司 (Integrated Device Technology, Inc.; NASDAQ: IDTI) ,推出业界首款拥有突破性 ±50 ppm 频率精度和超低功耗的 CMOS 振荡器。新器件代替了传统的石英晶体振荡器,在任何要求 ±50 ppm 时间基准的广泛应用中,节省功耗高达 75%,包括计算、通信和消费市场。 IDT 新的 3LG 系列 CrystalFree CMOS 振荡器确保 ±50 ppm 终身频率精度,与现有的石英
[网络通信]
锁相环正弦波振荡器电路
锁相环正弦波振荡器电路:
[模拟电子]
锁相环正弦波<font color='red'>振荡器</font>电路
Silicon Labs:RF CMOS工艺和产品性能的双赢
“我们属于多元化经营,产品涉及物联网、互联网基础设施、汽车、消费类以及语音和数据,2014年的营收达6.21亿美金。”Silicon Labs高级产品经理郭先城向与非网记者介绍,“面向基带市场,我们提供多元化产品组合,如微控制器、定时、电源、无线、传感器和广播。同时,我们在全球有1100多名员工,10个研发中心,在香港、深圳、北京和上海都有办事处,这样可以保证产品的服务质量。”   本次发布会,笔者第一次见到Silicon Labs的高级产品经理郭先城和陈子良,他们向记者展示了车载收音机系统解决方案和数字机顶盒系列产品。汽车电子和电视机顶盒是两个相对成熟并且竞争激烈的领域,他们会有怎样的表现?跟随与非网记者的脚步一起来看看。
[嵌入式]
振荡器生成精确时钟源的设计方案
数字逻辑已经成为当今所有电子电路的核心,无论是FPGA、微控制器、微处理器还是分立逻辑。数字系统采用必须互连在一起以执行所需功能的众多组件。确保此类数字系统正常运行的要素是实现所有数字组件之间通信以及在其之间建立同步的时钟信号。因此,我们始终需要一种源头来生成这种时钟信号。 信号源采用振荡器的形式。虽然当今大多数微控制器具有集成RC振荡器,但是这种内部RC振荡器生成的时钟质量往往不足以支持与系统中其它模块通信所需要的精度。因此,需要采用能够为整个系统提供时钟信号并且满足对精度、信号完整性与稳定性等一切要求的外部振荡器。 本文主要介绍在各种温度和时间下生成精确时钟的振荡器的不同方面。所涵盖的主题包括: 振荡器 - 振荡的基本标准 ●
[电源管理]
由<font color='red'>振荡器</font>生成精确时钟源的设计方案
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved