高压变频器在尾矿输送系统改造中的应用

最新更新时间:2010-12-26来源: 电源技术应用关键字:高压变频器  电动机  运行频率  尾矿输送 手机看文章 扫描二维码
随时随地手机看文章

  0 引言

  随着电子工业科学技术的迅速发展,变频器技术的应用已进入蒸蒸日上的时代,国内低压变频技术的应用由上世纪80年代初几家代理公司销售国外产品,发展到上世纪90年代末几家公司拥有低压变频技术的研发水平和制造能力。在低压变频技术得到广泛应用的同时,高压变频技术的研究和应用也初具规模。成都佳灵公司研发的“直高技术”和制造的高压变频器,更使国内的高压变频技术走到了国际水平的前列。1995年起金堆城钼业公司三十亩地选矿厂就高压变频技术在尾矿输送初级泵站的应用,进行了充分的市场调研和参观学习,鉴于当时高压变频设备的体积大、技术复杂,且价格昂贵,迫使该项目搁浅。时间进入21世纪后,工业用电量的突飞猛进,而且电价一路上涨,尾矿输送中的初级泵站应用高压变频器技术节电降耗已势在必行。

  1 尾矿输送工艺流程变化引起电能效率降低

  尾矿输送是选矿厂生产工艺流程的最末端,在尾矿输送成本费用的总数中,电能消耗费用占有较大的份额。本文所述的选矿厂其尾矿输送工艺流程要求在尾矿输送系统的初级泵站内,输送泵装配高压电动机。该高压电动机的额定参数为:P=3lOkW,U=6kV,=34A。由于生产条件的限定,初级泵站的运转率几乎是100%,电动机运行时输入电流一般为22A左右,月耗电量16×104kw.h以上。近年来由于该选矿厂生产工艺流程的改变,使得尾矿输送的工艺流程出现了两个途径。一是原有的向上50m输送,经300m管道至二级泵站;二是新设的向下5 m输出经1200m管道至尾矿汇集站。按选矿厂生产设定要求尾矿向下输送率≥85%,尾矿向上输送率≤15%。在这种生产系统中,初级泵站的尾矿输送出现了电能的浪费现象。虽然初级泵站的月耗电量已降至13×1O4kW·h,但是电能效率却大幅下降,即H2×W/P2远小于H×W/P1,式中H表示尾矿输送高度,H2=一5m,H1=50m;P表示电动机输出功率,P2=200 kW,P1=230 kW;W表示尾矿输送量,基本是一个恒定值。如此电能消耗的不合理性,改造初级泵站已成必然。但是通过论证,由于受经费条件和地理位置的限制,初级泵站彻底改造困难比较大,投资费用大。最终,减少初级泵站电能浪费的方法,只有是在保证尾矿输送情况下尽可能地降低电动机的功率消耗。

  2 选用高压变频技术是初级泵站最佳改造方案

  为了寻求节约电能的最佳方案,对初级泵站的主体设备进行了改造试验。在不改变电动机转速的情况下,用210 kW的电动机替换3lOkW电动机。在试验条件下,初级泵运行的电动机输出功率降低到了135 kW,试验取得了成功,为初级泵站的电气改造奠定了理论基础。但是试验过程中出现了初级泵站启动过程繁琐化,启动时需要利用阀门控制,逐渐实现尾矿的全部输送,启动过程所需要的时间长,无法满足选矿厂生产工艺流程的要求。分析造成这种现象的主要原因是电动机额定容量减少后,电动机的启动转矩也随之下降,无法保证输送泵象原来一样地迅速启动。

  如果应用高压变频技术控制原配电动机,即可实现电能效率的最大化,又可以简化启动过程和缩短启动时间。根据输送泵相关参数的关系式和电动机的转速公式

  式中:H表示泵的扬程;

  qv表示泵的流量;

  p表示电动机的功率;

  n表示电动机的同步转速。

  可以得到电动机在不同频率下运行时与电动机的功率关系式

  式(5)说明了电动机运行在较低的频率下,其消耗电能功率会有较大的降低。但是电动机随着输入电源频率的下降,其转速也随着下降。输送泵转速下降后能否保证原系统的工艺流程,也就是说能否保证在流量恒定不变的状态下,实现尾矿顺利输送。从上述实验中得到了系统稳定下电动机的输出功率下降范围在40~80kW。根据式(5)的计算比较,输入电源频率的变化应在30~45Hz范围内确定。再根据式(3)的计算比较,电动机的同步转速应在600~900 r/min的范围内确定。为确保高压变频器技术在初级泵站的应用投资与收益相符合,再次用8极电动机(同步转速750 r/min)在初级泵站进行了工艺流程试验,在其它条件不变的情况下,尾矿稳定输送。试验结果表明电动机在一定范围低转速下运转,输送泵能够保证原生产系统工艺流程。先后两次电力拖动实验取得的数据,坚定了该系统应用高压变频技术能够实现节能降耗的最初设想。

  3 高压变频器与尾矿输送设备的匹配设计

  初级泵站高压变频器与尾矿输送设备匹配设计的原则依据为:采用“直高”变频器技术,电压等级6 kV;变频设备体积要小,允许占有最大空间2350mm×1200mm×5000mm(高×宽×长);变频设备要求重量轻,厂房结构允许最大承重量4500 kg;变频设备内设电源输入高压真空断路器,距离6kV控制室100m;高压变频器系统控制方式采用开环控制,分7段频率输出与工艺流程相对应实现人机对话控制;高压变频器系统具备多功能的电信号保护和足够的过载能力,保证高压变频系统运行的可靠性和稳定性;设计目标是月节能4×104kW·h.

  根据初级泵站环境与工艺流程要求,在遵守设计原则的基础上,通过调研、比较、论证,最终确定了初级泵站应用高压变频器技术的设计方案。最终选用的高压变频设备由4台箱柜组成,总体积2 200mm×1200mm×4970mm(高×宽×长),设备总重量不大于3 500 kg。其中2#变频柜长1 600mm,内装整流桥单元和逆变桥单元;3#系统控制柜长970mm,内装控制电路、保护电路和人机对话显示系统4#低压柜长800mm,内装低压电源支持配电设备;l#开关滤波柜长1 600mm,内装开关单元、电抗器单元、滤波器单元及主变频电路。为了确保尾矿初级泵站在生产月内运转率100%,按全年二次全厂停车检修时间计算,要求高压变频器能够达到连续运行750 h以上,无故障运行4500 h以上。以此确定高压变频器的设计必须达到450 kW,从而保证系统过载能力100%,为实现高压变频系统运行的可靠性和稳定性,在高压变频器控制系统中引入过流、短路、缺相、欠压、过压、接地、过热、过载和电涌共9种功能保护,为防止功率器件在系统异常状态时损坏,设置主器件工作性能保护电路。为最大化的满足初级泵站生产工艺流程控制,在3#控制柜板面设置变频器指令元件,具有启动、停车、频率分段调节和状态指示功能;在3#柜控制柜版面还设置人机对话窗口,主控画面静态显示变频系统当前运行状况,移动画面通过触摸显示变频系统内相关温度和电能参数。

  4 安装与调试

  从高压变频器技术在初级泵站的实用出发,在市场调研和技术论证基础上,通过对制造费用的资金投人和节电效益的综合分析,高压变频器委托成都佳灵电器制造有限公司生产。高压变频系统设置7段频率分段控制功能,输出频率在5~60 Hz之间任意选择以适应初级泵站工艺流程需要。高压变频器的安装不但要能够满足现场设备运行操作的要求,而且也要充分考虑设备的检修维护和巡视检查的高压电气安全要求。高压变频系统完成实体连接后,进行了系统调试和模拟运行,在凋试过程中解决了方案设计存在的系统控制技术上的缺陷,使频率的分段区间最优化地包含工艺流程可能出现的变化,从而确保高压变频系统运行的稳定性和可靠性,促使电能节约的最大化。高压变频系统投入运行后,通过跟踪检测,数据采集分析结果令人满意。采集的数据如表l所列,而数据经统计后列于表2。由表1和表2可见,该高压变频系统遵循设计原则,实现了设计目标。

  5 结语

  高压变频器技术应用于尾矿初级泵站取得成功,高压变频器系统无故障连续运行已达4000h,高压变频设备运行稳定可靠,月节约电能平均达到5×lO4kW·h。

关键字:高压变频器  电动机  运行频率  尾矿输送 编辑:金海 引用地址:高压变频器在尾矿输送系统改造中的应用

上一篇:一个高可靠性的短路保护电路设计及其应用
下一篇:德州仪器为 5 V 电源推出 Green Rectifier™ 控制器

推荐阅读最新更新时间:2023-10-18 15:05

三相异步电动机的正反转控制原理详解
三相异步电动机的正反转控制原理 三相异步电动机接触器联锁的正反转控制的电气原理图如图所示。线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。 控制原理:当按下正转启动按钮SB2后,电源相通过热继电器FR的动断接点、停止按钮SB1的动断接点、正转启动按钮SB2的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1,使正转接触器
[嵌入式]
三相异步<font color='red'>电动机</font>的正反转控制原理详解
汽车电动机通解:它能秒杀传统发动机吗?
虽然目前纯电动车还有着很多不完善的地方,但是依然不妨碍大部分人把它当成是未来汽车的主流进化方向——我相信很大一部分原因就是特斯拉通过MODEL S/MODEL X,给大家展现出了一种耳目一新的高级驾驶体验,呈现出了电动车这块璞玉所蕴藏的可能性…… 而这一切又和汽车电动机与传统燃油机有着天壤之别的特性密不可分。今天,我们就给大家做一次关于汽车电动机的简单科普。 汽车电机的优越性在哪? 不要以为电动车里除了特斯拉之外,就只有一堆又小又慢的老年代步车。如今已经诞生了很多性能强悍的电动超跑,譬如蔚来EP9、RimacConcept One等等。它们都有一个共同的特点,那就是加速能力足以甩掉绝大部分传统燃油车一大截——很多车型的百
[汽车电子]
三相异步电动机的定子绕组短路的原因及检修
  三相异步电动机定子绕组短路的原因   ①修理时嵌线操作不熟练,造成绝缘损伤,或在焊接引线时烙铁的温度过高、焊接时间过长而烫坏线圈的绝缘。   ②绕组因年久失修使绝缘老化,或绕组受潮,未经烘干便直接运行,导致绝缘击穿。   ③电动机长期过载使用,绕组中电流过大,使绝缘老化,绝缘性能降低而失去绝缘作用。   ④定子绕组线圈之间的连接线或引线绝缘不良。   ⑤绕组重绕时,绕组端部或双层绕组槽内的相间绝缘没有垫好或击穿损坏。   ⑥由于轴承磨损严重,使定子和转子铁芯相擦产生高热,而使定子绕组绝缘烧坏。   ⑦雷击、连续启动次数过多或过电压击穿绝缘。   定子绕组短路故障的检查方法   ①观察法。观察定子绕组有无烧焦绝缘或有无浓厚的焦味
[嵌入式]
三相异步<font color='red'>电动机</font>的定子绕组短路的原因及检修
三相异步电动机多地控制和顺序控制线路分析
  三相异步电动机多地控制线路   在大型设备上,为了操作方便,常要求多个地点进行控制操作;在某些机械设备上,为保证操作安全,需要多个条件满足设备才能开始工作,这样的控制要求可通过在电路中串联或并联电器的动断触点和动合触点来实现。多地控制线路只需多用几个启动按钮和停止按钮,无需增加其他电器元件。肩动按钮应并联,停止按钮应串联,分别装在不同的地方,如图3.33所示,SB11和SB12装甲地,SB21和SB22装在乙地,动作原理一样。但是要注意多点控制和多条件控制的区别,在逻辑电路上是逻辑“或”为多点控制,逻辑“与”是多条件控制。多条件控制虽然控制繁琐,但是可以安全可靠地操作大型机床,避免不必要的意外发生。      图3.34(a
[嵌入式]
三相异步<font color='red'>电动机</font>多地控制和顺序控制线路分析
带过流保护的双全桥电动机驱动器 IC
Allegro MicroSystems 公司推出两款全新电动机驱动器 IC,进一步完善其已有的电动机驱动器系列。Allegro 的 A4986/A4987 设备是带平行输入通信和过流保护的双 DMOS 全桥步进电动机驱动器。每个全桥输出额定值为 35 V 和 ±2 A。这些设备具有固定停机时间脉冲宽度调制 (PWM) 电流稳压器以及 2 位非线性 DAC(数模转换器),允许按完整、1/2 及 1/4 步进模式控制步进电动机。 PWM 电流稳压器使用 Allegro® 已获专利的混合衰减模式减少可听到的电动机噪音、增加步进精确度并减少功率耗散。提供内部同步整流控制电路,以改善脉宽调制 (PWM) 操作时
[工业控制]
带过流保护的双全桥<font color='red'>电动机</font>驱动器 IC
异步电动机发生绕组短路的原因
  异步电动机发生绕组短路的原因   (1)电动机由于长期在过负载或过电压下运行,使绕组内的电流过大而发热,加快了绝缘老化,使绝缘脆裂,失去绝缘作用,或由于运行时的振动而使发脆的绝缘脱落。   (2)修理电动机时,由于操作粗心大意,把漆包线的外层绝缘物损坏或在焊接时由于温度过高,焊接时问过长,使焊接处的绝缘老化或损坏。   (3)长期停用的电动机因绝缘受潮,没有经过绝缘干燥处理就投入运行。受潮的绝缘被击穿而致使短路。   (4)双层绕组的槽内因相间绝缘没有垫好,发生击穿而损坏。   (5)单层绕组的端部相间绝缘没垫好或在端部绑扎时滑动而造成端部相间绝缘击穿而短路。   (6)绕组端部太长,碰触端盖或绝缘没有垫好。   (7)绕组端
[嵌入式]
异步<font color='red'>电动机</font>发生绕组短路的原因
电动机软启动器工作原理及其在探矿工程中的应用分析
前 言 随着科学技术的飞速发展和 计算机控制技术的日趋成熟,近年来一种以计算机为核心,采用双向可控硅为主控回路的智能化新型控制器 “ 电动机 软启动器 ” 已经在工业生产 领域 中崭露头角 ,它以控制方式灵活简便,对 供电 系统和电气设备 冲击小且控制元件不易 损坏以及维护方便等诸多优点正逐步取代传统的控制装置。 这项新技术的诞生使电动机的启停技术发生了划时代的变化。 在众多生产领域中,由于 三相异步电动机具有结构简单、运行可靠、维修简便、价格适宜等特点,在电力拖动机械中有 90% 以上是由三相异步电动机驱动的。按常规惯例,对较大容量的三相异步电动机的启动,一般均采用星—角启动、电抗器启动或者是自耦减压启动。这几种启动方式由
[嵌入式]
异步电动机原理特性了解一下!
异步电动机又称“感应电动机”,即转子置于旋转磁场中,在旋转磁场的作用下,获得一个转动力矩,因而转子转动。 转子是可转动的导体,通常多呈鼠笼状。定子是电动机中不转动的部分,主要任务是产生一个旋转磁场。旋转磁场并不是用机械方法来实现,而是以交流电通于数对电磁铁中,使其磁极性质循环改变,故相当于一个旋转的磁场。 依据所用交流电的种类有单相电动机和三相电动机,单相电动机用在如洗衣机,电风扇等;三相电动机则作为工厂的动力设备。 01 异步电动机工作原理 ▼ 通过定子产生的旋转磁场与转子绕组的相对运动,转子绕组切割磁感线产生感应电动势,从而使转子绕组中产生感应电流。转子绕组中的感应电流与磁场作用,产生电磁转矩,使转子旋转。
[嵌入式]
异步<font color='red'>电动机</font>原理特性了解一下!
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved