如何提升逆变电源的可靠性?

最新更新时间:2011-02-23来源: 电源网关键字:电源 手机看文章 扫描二维码
随时随地手机看文章

      首先说一下输入回路的电解电容,我们知道,逆变器的DC输入电流通常很大,一个12V  1000W 的逆变器输入电流最大可达120A以上,此时输入端的电解电容的选择就非常关键了,选择不当时,炸电解电容的故障就会变成‘家常便饭’了。

 

      第二个要说的就是对不同负载特性适应性问题。这里又包含两个问题,1. 是逆变器自身的功率余量、允许最大带载启动输出电流与过流保护措施;2. 是对不同特性如感性、容性、负阻性等负载的适应性。一般如果在技术上没处理好这些问题,产品在使用时就易出现各种问题。 
      再者就是散热问题,除了主功率开关器件、高频整流二极管、主功率变压器等部件,电解电容的散热也不能掉以轻心.....
      说到逆变器的可靠性,有一个不得不说的重要问题,就是MOS管的并联问题,当然这里又包含了并联驱动问题与PCB的布线问题。“均流均压” 这简简单单四个字里不但包含平衡驱动、PCB布线均衡(布线的DC、AC电阻相等)、还包含了管体散热均温、MOS管的Ron动静态匹配(选管)等问题。
      撇开并网,再一个对运行可靠性有举足轻重的影响的是逆变器的“自我”保护问题,包括限流保护模式(前面已提到过),热关断保护,用户操作异常保护,负载异常保护,启动保护等等。这个说法不能说不对,其实如已及时关掉了后级,一般前级的过流也就能自行解除了。当然实用时前级高频大功率DC/DC与后级50Hz/60Hz逆变部分都应具有性能良好的限流控制环路。
      对于原器件的参数设定与选型一样会影响到产品的可靠性,这个自不必多说。但对MOS管、超快整流二极管来说,不同的封装形式对可靠性的影响有时差别十分明显!不得不认真重视之。

 [page]

      在谈驱动问题前,先上一幅实测的推挽逆变电路的其中一边MOS管的G极波形(1:1 蓝)与升压变压器的副边电压波(15:1 黄),这是电路处在满载1000W  DC+24V输入时的实测波形,可以看到另一路MOS管导通时串入到截止MOS管的G极的干扰尖刺波形。

      由于大部分逆变器的MOS管驱动部分的供电与主振荡IC一样,都为单电源供电(用SG3525输出直驱管MOS的也不少见),因此驱动波形以0V~+15V方波为多见,此时驱动波形如受到干扰(见上图尖刺部分),如接近达到MOS管的Vth值,则对系统的不良影响自不用多说,起码也会影响效率与温升。如采取一般的手段无法有效减低或避免这种干扰时,采用负压关断也就很有必要了。这个问题在专业的量产方案中,应引起足够的重视。

 

      此图为实测逆变器满载时的推挽A相与B相MOS管的G极波形(1:10),由于采用了+15V开通、-5V关断的驱动方式,同时精选低Qgs的功率MOS管,驱动波形的“尖峰”干扰大为减少,也可看到由于采用了负压关断,满载时从对方相位串扰过来的“毛刺”被有效控制在0V线以内(红圈),确保截止时期的MOS管能绝对可靠地截止关断。

      在说环路反馈与过流保护前,接续4楼散热话题,先来说说结构设计与主功率管的散热问题。举一个实例:某山寨小企业抄板了某个已成熟的逆变电路,此电路在别人那里反映不错,而在自己这里的产品却炸主功率MOS管的比例较高.....

      后告知先送个样机过来看看...拿到样机拆开后发现8个TO-220封装的主功率MOS管密集在一边,铝壳壁厚度才3mm~4mm...虽有热探头,还是无语了。

 [page]

      摄氏25度环境时,输出满载1000W,10分钟后图片B处(8个MOS管的中心位置)的温度比A处高出6~8度!C处(绿圈)最低,比B处低14~15度!(C处为进风口,D为风扇,样机为进风设计,据说是用以延长含油轴承的寿命),同样型号并联工作的功率MOS管,实
际工作的温差那么大,自然对“均流”是极其不利! 所以可靠性不高就不足为怪了。

 

      结合散热设计,对MOS管的并联来说,从参数筛选配对(如Ron、Qgs等的误差最好小于5%)到每个MOS管的PCB的走线参数(PCB布线的AC、DC阻抗)相近、驱动波形严格相同、工作时的温升变化同步一致(以后再详说)等等,当然还有限流保护点的合理选定、装配焊接工艺的各个细节都不能掉以轻心!  这样才能保证并联工作时的高可靠性。

 

      附图中的A是原边互感器采样,B是康铜丝采样,在逆变器中A多用做峰值限流;B多为平均值限流模式。

      采用康铜丝采样时,由于为了减少损耗,一般输出电压极低,需放大后再作为反馈信号,多用作平均值限流控制,虽然响应速度慢,但却有限流精度高且稳定的优点,当蓄电池电压从14.5V下降到10.5V时,结合对限流值的补偿,可获得较理想的恒定输出功率,不会导致因蓄电池电压下降而影响逆变器的输出功率。(转自电源网)

关键字:电源 编辑:冰封 引用地址:如何提升逆变电源的可靠性?

上一篇:USB-OTG总线端口ESD保护阵列[Vishay]
下一篇:解决电源噪声的新思路

推荐阅读最新更新时间:2023-10-18 15:07

德州仪器推出针对服务器与DC/DC 电源系统的4A 高速MOSFET 驱动器
8引脚电源栅极驱动器以每相位40A电流在7V至8V电压范围内实现业界最高效率 2006 年 7 月 20 日,北京讯 日前,德州仪器 (TI) 宣布推出一款针对 N 通道互补驱动功率 MOSFET 的 4A 高速同步驱动器。该款 2MHz 驱动器简化了大电流单相与多相应用中的电源设计,如电压稳压器模块 (VRM) 设计、笔记本电脑、带有二次侧同步整流器的隔离式电源以及对效率要求极高的 DC/DC 转换器等。更多详情,敬请参见: www.ti.com.cn/ tps28225 。 TI 的 TPS28225 驱动器以 4.5V 至 8.8V 电压控制 MOSFET 栅极,
[新品]
阳光电源印度市场太阳能逆变器出货量破1GW大关
主流光伏逆变器供应商阳光电源在2010年进入印度市场后,于日前取得了该市场内太阳能逆变器出货总量1GW的成就。 阳光电源在该市场内的古尔冈、孟买和班加罗尔等地设有办事处,并曾宣布在2017年底前完成印度市场逾2GW的光伏逆变器供应量。 阳光电源印度总监Luke Lu表示:“我们的成就是基于针对不同应用进行科学设计的产品理念而实现的,这就意味着公司将根据客户不同的需求进行不同产品和解决方案的开发。印度是全球最重要的光伏市场之一。阳光电源将继续开发先进的产品、提高自身能力,以更好地为印度市场上的合作伙伴提供服务。” 阳光电源自成立以来,已在全球市场上完成了逾38GW逆变器设备的交付。 公司近期与日本贸易公司汤浅商事株式会社(YUASA
[新能源]
在分布式电源系统中采用集成DC-DC转换器节省空间、缩短研发时间
   引言   通过使用单个大功率、隔离型DC-DC模块将48V电压转换成一个中等 电源 ,如12V或更低电压,可以获得较好的系统性能。将这一中等电压再转换到系统负载所要求的具体电压。这样的电压转换可以通过非隔离、负载点 电源 实现,如图1右侧框图所示。对于第二级电源转换,集成开关稳压器是非常理想的选择,因为输入电压(≤ 12V)和输出电流( 10A)相对较低。 图1. 与电信单板上传统的分布电源架构(左边)相比,集成 开关调节器 (右边)具有更高效率和可靠性,能够加快设计进程、缩小电路板面积。    采用集成开关调节器的优势   电子行业的很多领域,包括电源电子行业,其共同目标是集成系统元件,以降低总体成本、
[电源管理]
在分布式<font color='red'>电源</font>系统中采用集成DC-DC转换器节省空间、缩短研发时间
开关电源中几种过流保护方式的比较
摘要:在输出短路或过载时对电源或负载进行的保护,即为过电流保护,简称过流保护。介绍了过流保护的几种型式,如フ字型、恒流型、恒功率型等,并进行了比较。 关键词:过流保护;检测;比较 引言 电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。 1 开关电源中常用的过流保护方式 过电流保护有多种形式,如图1所示,可
[应用]
Powerbox推出在强磁场环境的应用无芯电源转换技术
Powerbox 40多年以来在给高要求的应用提供最佳的解决方案在领域里一直处于领导地位,现推出一种无芯电源技术,该技术在医疗电源和工业设备应用中已经得到运用,比如在高磁场环境如磁共振成像或粒子加速器等。为了优化效率和调整电压,使用最新技术的高频拓扑开关并配备特殊固件的数字控制,Powerbox 的GB350 降压转换器模块,它的材质结构可以让它暴露在2到4T的高辐射磁场环境中仍然能安全工作,这是此类型电源模块中第一个可以实现此功能的。GB350提供350W的输出功率,在要求更高功率时可以并联使用从而降低EMI。 医疗和工业应用,如磁共振成像(MRI)和粒子加速器(PA)产生高磁场诱导的RF能量,当研究和工业上若要成像或者粒子加速
[电源管理]
Powerbox推出在强磁场环境的应用无芯<font color='red'>电源</font>转换技术
基于NCL30001的LED区域照明电源
有些区域照明应用场合要求提供带输入功率因数校正的隔离型稳压输出电压。这些应用通常采用两段式的电源转换架构,其中的升压功率因数校正(PFC)将交流输入线路电压转换及预稳压为直流400 V电压,然后提供电压给可以是任何适当拓扑结构的常规直流-直流(DC-DC)转换器(功率不超过150 W的应用中通常是反激转换器)。 我们能够采用一种更简单的方法来改进这种传统的两段式转换架构,使其成为一种集成功率因数校正和主转换器(即DC-DC转换器)的单段式架构。这种单段式架构提供具备显著的应用优势,因为无需使用大尺寸的升压电感、高压MOSFET、功率整流器和大电容。当然,这种单段式架构会带来某些方面的一些性能折衷,但却是一种高能效及高性价比的
[电源管理]
基于NCL30001的LED区域照明<font color='red'>电源</font>
双路输出低压差电压调整器TPS767D301及其应用
引言 自从美国TI公司推出通用可编程DSP芯片以来,DSP技术得到了突飞猛进的发展,但DSP的电源设计始终是DSP应用系统设计的一个重要的组成部分,TI公司的DSP家族一般要求有独立的内核电源和IO电源,由于DSP在系统中要承担大量的实时数据计算、因为在其CPU内部,部件的频率开关转换会使系统功耗大大增加,所以,降低DSP内部CPU供电电压无疑是降低系统功耗最有效的方法之一 。如TMS320F2812 DSP的核电压为1.9V,IO电压为3.3V;因此,传统的线性稳压器(如78XX系列)已经不能满足要求,面对这些要求,TI公司推出了一些双路低压差电源调整器,即Low Drop Regulator,其中TPS767D301是其
[应用]
Dialog成为赛灵思SoC和FPGA领先电源管理合作伙伴
Dialog半导体公司 (德国证券交易所交易代码: DLG )日前宣布,成为领先FPGA、SoC和3D IC供应商赛灵思的关键电源管理合作伙伴。通过与赛灵思合作,Dialog将充分发挥其在开发针对下一代传感器处理、网络连接和汽车应用的高效、可扩展电源管理解决方案的丰富经验。Dialog为赛灵思 Zynq®-7000 SoC、 Zynq UltraScale+ ™ MPSoC 和 Spartan®-7 FPGA 平台提供完整的电源管理解决方案组合。 这次合作将带来结合了两家公司器件的高效、成本优化的解决方案。 DA9063 电源管理IC(PMIC)和 DA9213 子-PMIC可满足Zynq UltraScale+ MPS
[嵌入式]
Dialog成为赛灵思SoC和FPGA领先<font color='red'>电源</font>管理合作伙伴
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved