开关电源原理与设计(连载37)交流输出单电容半桥式变压器开关电源(part2)

最新更新时间:2011-02-28来源: 互联网关键字:开关电源  半桥式 手机看文章 扫描二维码
随时随地手机看文章

      另外,单电容半桥式变压器开关电源属于正激励输出电源。正激式电源的变压器伏秒容量一般都取得很大,励磁电流相对于等效负载电流来说非常小,即:在图1-40-b中i2远远大于i1。由此,我们主要是对i2电流的作用进行分析,而对i1只把它看成是对i2进行调制,并且调制幅度很小。

      如果不考虑i1对i2的调制作用,则当控制开关K1接通,电源电压Ui开始通过控制开关K1和开关变压器初级线圈的等效负载电阻R对电容C1进行充电,电容器两端的电压增量为:

      (1-164)和(1-165)式中,Δuc 电容器充电时电容器两端的电压增量,Δ uc2为电源单独通过等效负载电阻R对电容器充电时,电容器两端的电压增量;Δ um2为电容充电电压增量的最大值,即电流i2对电容充电产生的电压增量最大值, U(0-)c2为电容器刚开始充电瞬间电容器两端的电压,即电容器开始充电时的初始电压;电容第一次充电时,由于初始电压U(0-)c2 = 0,所以ΔUm2 =Ui , Ui为电源电压;R为负载回路通过变压器次级线圈折射到变压器初级线圈回路的等效负载电阻,R =R1/n*n ,R1为变压器次级线圈输出回路的负载电阻。

      RC为时间常数,时间常数一般都用τ来表示,即τ = RC,其中C = C1。这里为了简化在不容易混淆的情况下我们经常把电感L和电容C的下标省去。

      当需要进一步考虑流过开关变压器初级线圈N1绕组的励磁电流对电容充电的影响时,可在(1-164)式右边乘以一个略大于一的系数,这是因为励磁电流与流过等效负载的电流对电容充电时,电流方向完全一致,并且充电曲线的曲率也很相近。

      当控制开关K1关断,控制开关K2刚接通的时候,电容器C1将通过控制开关K2和开关变压器初级线圈的b、a两端进行放电。同样,电容放电时也可以看成是电容对两部分电路进行放电。电容放电的过程也可以参考图1-40,不过图中应该把电源Ui移去并把原来接电源的两端引线短路,以及把控制开关K1换成K2。

      前面已经指出,在电感与电容组成的电路中,电容放电时其两端的电压是按余弦曲线下降的;而在电阻与电容组成的电路中,电容放电时其两端的电压是按指数曲线下降的。同理,由于励磁电流相对于等效负载电流来说非常小,这里我主要考虑流过等效负载电阻R对电容器C1进行放电的作用。根据前面分析,这里我们直接给出电容放电过程的数学表达式:

      (1-166)和(1-167)式中,负号表示电容放电,其电流或电压的方向与电容充电时的电流与电压的方向相反;-Δuc 为电容器放电时任一时刻电容器两端的电压增量(取负值),-Δuc2 为电源单独通过等效负载电阻对电容器放电时,任一时刻电容两端的电压增量(取负值),-U(0+)c2 为电容器刚放电瞬间电容器两端的电压(取负值),或电容器在上一次充电时电容器两端的电压(取负值),即电容器开始放电时的初始电压;R为负载回路通过变压器次级线圈折射到变压器初级线圈回路的等效负载电阻,R =R1/n*n ,R1为变压器次级线圈输出回路的负载电阻。

      同理,当需要进一步考虑流过开关变压器初级线圈N1绕组的励磁电流对电容放电的影响时,可在(1-166)式右边乘以一个略大于一的系数。

      由此可见,要精确计算电容器每次充、放电时的电压值是非常麻烦的,如果同时也把流过变压器初级线圈的励磁电流对电容充放电的影响也考虑进去,计算还要更复杂。

      在半桥式变压器开关电源中,控制开关K1每接通一次,电容器C1就要被充电一次;控制开关K2每接通一次,电容器C1就要被放电一次。但由于开关电源刚开始工作的时候,电容器C1事先没有充电,电容器两端的电压约等于零,所以,电容器每次充电的电荷或电压增量总是大于电容器放电的电荷或电压增量,因此,电容器两端的平均电压在开关电源刚开始工作的时候是一直在上升的;直到电容器每次充电的电压增量与电容器放电的电压增量完全相等时候,电容器两端电压的平均值才会稳定在某个数值上。

      如果控制开关K1和K2工作时占空比完全相等,则:电容器每次充电的电压增量与电容器放电的电压增量也完全相等,电容器两端电压的平均值就会正好稳定在输入电压Ui的二分之一处。即:

      Δuc =│-Δuc │ —— 电容充满电时 (1-168)

      U(0-) c2≈U(0+) c2 ≈ Ui/2—— 电容充满电时 (1-169)

      这里特别指出:(1-169)式中认为电容充、放电时的初始电压值基本相等,是因为电容的容量一般取得很大,每次充放电时电容两端的电压变化很小,这同时也意味着电容器充满电所需要的时间相当长。

      如果电容器两端电压的平均值不等于输入电压Ui的二分之一,那么,电容每次充电的电荷或者电压增量与电容器放电的电荷或者电压增量也不会相等,此时,电容器两端电压的平均值将会跟随充电或者放电增量较大的一方而变化。例如,当控制开关K1接通的时候,如果电容器充电的电压增量,大于控制开关K2接通时电容器放电的电压增量,则电容器两端电压的平均值将会上升;反之,电容器两端电压的平均值将会下降。


关键字:开关电源  半桥式 编辑:冰封 引用地址:开关电源原理与设计(连载37)交流输出单电容半桥式变压器开关电源(part2)

上一篇:开关电源原理与设计(连载36)交流输出单电容半桥式变压器开关电源(part1)
下一篇:开关电源原理与设计(连载38)单电容半桥式变压器开关电源输出电压

推荐阅读最新更新时间:2023-10-18 15:09

开关电源电磁兼容设计经验谈
    随着电力电子技术的发展,开关电源模块因其相对体积小、效率高、工作可靠等优点开始取代传统整流电源而被广泛应用到社会的各个领域。但由于开关电源工作频率高,内部产生很快的电流、电压变化,即dv/dt和di/dt,导致开关电源模块将产生较强的谐波干扰和尖峰干扰,并通过传导、辐射和串扰等耦合途径影响自身电路及其它电子系统的正常工作,当然其本身也会受到其它电子设备电磁干扰的影响。这就是所讨论的电磁兼容性问题,也是关于开关电源电磁兼容的电磁骚扰EMD与电磁敏感度EMS设计问题。由于国家开始对部分电子产品强制实行3C认证,因此一个电子设备能否满足电磁兼容标准,将关系到这一产品能否在市场上销售,所以进行开关电源的电磁兼容性研究显得非常重要。
[电源管理]
<font color='red'>开关电源</font>电磁兼容设计经验谈
高耐压PWM三端开关电源
最简单的5V/5W开关电源实际电路如图所示。图中TOP210IC1)为三端PWM开关。IC1中含有PWM控制器,功率MOSFET和各种保护电路。这种5V/5W开关电源的成本比常用的线性电源成本低。 该电源交流输入电压范围为85"265V,当负载从额定负载的10%变化到100%,电源电压调整率和负载电流调整率可达+-5%。该电源还具有过压、超温保护和限流等功能。 TOP210的D脚为内部输出MOSFET的漏极,C脚为内部误差放大器和反馈电流输入脚,用来调整开关电源的占空比。S脚为内部MOSFET的源极,也是内部控制电路的公共端。 交流输入电压经VD1-VD4整流后的直流高压,加到变压器T1初级线圈的一端,初级线圈的另一端加到TOP
[电源管理]
待机功耗特低的开关电源
摘要:简要介绍了功率MOSFET驱动器MC44608的组成和特点,着重描述了以MC44608为核心的待机功耗开关电源的典型应用和由MC44608构成的80W TV电源的实用电源,并对设计应用中的几个问题进行了讨论。 关键词:低待机功耗 SMPS TV电源 MC44608 1 引言 当今,社会、家庭和办公室中的各种装置的待机损耗已成为污染的重要来源。通常,电视接收机、监视器、打印机、传真机等家电产品的能量消耗都有两种截然不同的模式:即运行模式和待机模式。运行模式时,在保证同样系统性能的前提下,可以通过降低各部分能耗来实现节能(如电源交率直接影响系统总线耗等)。而待机模式则有所不同,这些电路中的唤醒单元是永久供电的,以便随时准备
[应用]
简化离线开关电源的设计
与传统的线性电源相比,开关电源具有许多优点。在通常情况下,如果只需要一个直流输出,采用一个变压器、整流器和滤波电容就可构成线性电源。有时,可采用一个线性稳压器提供稳压输出。这种系统的主要优点是简单,所以成本通常较低。而开关电源通常结构复杂、价格昂贵,所以线性电源获得了广泛应用。表1列出了两种系统的优点和缺点。 表1 线性与开关电源对比 线性电源 开关模式电源 通常成本很低 成本有低有高 噪声低 可达到低噪声,但会增加复杂度 结构简单 结构复杂 重量重,体积大 重量轻,体积小 效率低 效率高 固定输入电压 通用输入电压   
[电源管理]
开关电源产品质量设计讲堂:攻克电压浪涌与电流浪涌难关
  为了防止开关电源(开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成)系统中的高速开关电路存在的分布电感与电容在二极管蓄积电荷的影响下产生浪涌电压与噪声。文中通过采用RC或LC 吸收电路对二极管蓄积电荷产生的浪涌电压采用非晶磁芯和矩形磁芯进行磁吸收,从而解决了开关电源浪涌电流的产生以及抑制问题。   引言   开关电源的主元件大都有寄生电感与电容,寄生电容Cp一般都与开关元件或二极管并联,而寄生电感L通常与其串联。由于这些寄生电容与电感的作用,开关元件在通断工作时,往往会产生较大的电压浪涌与电流浪涌。   开关的通断与二
[电源管理]
<font color='red'>开关电源</font>产品质量设计讲堂:攻克电压浪涌与电流浪涌难关
利用PS223设计的ATX开关电源技术
开关电源以安全、可靠为第一原则,高性能大功率ATX电源设计中应用电源管理监控芯片实现防浪涌软启动以及防过压、欠压、过热、过流、短路、过温等保护功能。 开关电源SPS(Switching Power Supply)利用现代电力电子技术,以小型、节能、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备。 1 ATX电源概述与电源管理监控保护功能 Intel制定的大功率(350~900 W)ATX电源规范版本是ATXl2V 2.2,+12 V采用双路输出,其中一路+12 V(A)专为CPU供电,而另一路+12 V(B)则为其他设备供电,输出到主板的接头为24针脚,以输出两组+12 V
[电源管理]
利用PS223设计的ATX<font color='red'>开关电源</font>技术
静电感应晶闸管(SITH)在开关电源电路中的应用
 1 引言   在先前发表的“静电感应晶闸管(SITH)的应用研究”一文中,我们对国产SITH器件的基本特性作了研究,并研制了四种驱动电路。在这四种电路驱动下,SITH器件取得了0.2 ms以下的开关速度。现进一步将驱动电路及SITH器件一起扩展成实际的开关电源应用电路,经测试,得到了比较先进的性能指标。这样,对SITH器件的应用研究就更加全面,使得对它的推广应用打下扎实的基础。   2 电路研究   2.1 应用电路(一)   该应用电路是一个开关电源,是鉴于以下几点考虑而设计的:(1)针对电机调速、温度控制等大功率应用方向,确定是AC-DC变换,这里AC 专指交流50周单相电压220V工频电网;(2)该电源输入必须是高功率因数
[电源管理]
静电感应晶闸管(SITH)在<font color='red'>开关电源</font>电路中的应用
开关电源设计各项指标定义详解
一. 描述输入电压影响输出电压的几个指标形式。   1. 绝对稳压系数。   A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量△U0 与输入电网变化量△Ui 之比。既:   K= U0/ Ui 。   B.相对稳压系数:表示负载不变时,稳压器输出直流电压 Uo 的相对变化量△Uo 与输出电网 Ui 的相对变化量△Ui之比。急:   S= Uo/Uo / Ui/Ui   2. 电网调整率。   它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。   3. 电压稳定度。   负载电流保持为额定范围内的任何值,输入电压在规定的范围内
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved