5年前,当很多厂商提出要将待机功耗降为1W以下时,很多人惊呼为不可实现的“神话”!不过最后,这个所谓的“神话”最终变为现实,现在,一些厂商开始向零待机功耗发起冲击,相信这个技术将会再次刷新我们对待机功耗的理解。
在2011 IIC-China上,PI公司展示了两款零待机功耗解决方案,其中一款是基于其集成离线式开关IC - LinkZero-AX的零待机功耗方案,吸引了很多整机设计工程师。我们都知道,电子产品在待机时一般都是主电源不工作,而辅助电源处于工作状态,PI的LinkZero-AX采用了一种新的断电模式,可在电源空载时有效关断辅助电源。断电模式可由微控制器获取的信号触发,它可以完全关断开关操作和内部开关控制电路,从而消除这些不需要的功能所浪费的能量。在断电模式下,LinkZero-AX并没有终止工作,通过复位脉冲或按键操作即可将IC唤醒。
“其实这里提出的零待机功耗并非完全待机功耗为零,只是待机功耗降低到非常低的水平,一般10毫瓦的待机功耗可以测出,但到了10毫瓦以下,测量都很困难,所以可以称为零功耗!” Power Integrations市场营销副总裁Doug Bailey指出。实际测量表明,LinkZero-AX能将高功率消费类产品及电器的待机功耗降低至4 mW,甚至接近零瓦。(按照IEC 62301第4.5条规定,低于5 mW的待机功率视为零功耗。)
随着节能环保成为共识,更低的待机功耗技术也受到消费者的重视,据了解,电器产品在待机时所消耗的电能,已经成为一种严重的能源浪费。据中国节能产品认证中心调查发现,一个城市家庭中有待机功能的家用电器有将近10余种,每月平均待机功耗在15-30瓦之间,这个数字占到家庭电力消耗的10%左右。也就是说,每个月你支付的电费里面,有一成是为待机买单,所以节能技术还有深挖的潜力。
“另一种待机现象是充电器。例如,手机充电器一般在充满电后,很多用户没有及时断电,导致充电器在待机状态继续消耗电流。” Doug强调,“采用了我们的方案后,可以杜绝这样的现象发生。”针对这种零待机需求,PI推出了LinkZero-LP 产品,它适合充电器和适配器。LinkZero-LP采用了新的控制技术,能使器件自动进入空载模式并可以从空载模式中被唤醒,而空载功耗也是4 mW ――这远低于IEC规定的零空载功耗标准。
“LinkZero-LP可以自动监测负载,当负载去除后进入断电模式,再次施加负载后自动重新激活。”Doug指出,“另外,其启动及工作时的IC供电直接来自于漏极引脚,无需使用启动电路。通过内部振荡频率的抖动大大降低了准峰值和平均值的EMI,从而降低滤波器成本。”
目前,PI提供小功率零待机方案,如下图所示。
图1 PI 2.1W CC/CV充电器方案,基于PI LinkZero-LP器件,待机功耗接近于0
图2 PI 1.5W非隔离式反激式电源,待机功耗接近于0
Doug 透露PI将来会从两个方向发展零待机功耗产品,一个方向是进一步降低待机功耗,向真正的“零功耗”发展,另一个方向是将产品适用领域扩展到更高功率产品,例如白家电、大型电器设备等等。由于平板数字电视日益普及,其开机需要时间,加上很多用户已经知道开机瞬态电流对家电的损害非常大,所以很多中国用户不再采用CRT电视时代使用的直接断电的模式,而是让电器处于待机状态,这样的使用习惯急需零待机功耗产品的面世。
现在,除了PI,飞兆半导体、NXP等公司也开始推出零待机功耗产品。相信在不久的将来,零待机功耗电器将迎来普及的时代。
背景知识:开关电源待机功耗机理分析
目前,大多数100W以下的电子设备,如电源适配器、充电器、无绳电话、ADSL路由器、LCD显示器和DVD等等,都是采用离线反激式开关电路,将电网提供的85V~275V交流电转换为电子设备所需要的直流电压。正常工作状态下,反激式开关电源的损耗主要包括导通损耗和开关损耗,以及控制电路的损耗。待机状态下,由于系统的输出电流接近于零,导通损耗可以忽略,开关损耗和控制电路的损耗成为主要的系统待机功耗。降低待机功耗,应着眼于开关损耗和控制电路的损耗的降低。
上图给出反激式开关电源在待机状态下的主要损耗类型,其功率管开关损耗、驱动损耗、变压器磁芯损耗、输出整流管反向恢复损耗以及缓冲器损耗都属于开关损耗。各种类型的开关损耗都与开关频率有关,降低开关频率可以减少开关损耗。控制电路的损耗主要表现为启动电阻上的损耗,而启动电阻的损耗直接与整流后的直流母线电压和启动电阻数值有关。在保证宽电压输入的工作条件下可以通过降低启动电流的方法来降低启动电阻损耗。
上一篇:电流传感器优化现代太阳能装置
下一篇:电流传感器优化现代太阳能装置
推荐阅读最新更新时间:2023-10-18 15:17
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况