线性稳压器件补偿和波特图解析

最新更新时间:2011-04-28来源: 互联网关键字:线性稳压器 手机看文章 扫描二维码
随时随地手机看文章
一个包含三个极点和一个零点的波特图将用来分析增益和相位裕度。假设直流增益为80dB,第一个极点发生在100Hz处。在此频率时,增益曲线的斜度变为-20dB/十倍频程。1kHz处的零点使斜度变为0dB/十倍频程,到10kHz处增益曲线又变成-20dB/十倍频程。在100kHz处的第三个也是最后一个极点将增益斜度最终变为-40dB/十倍频程。

  也可以看到单位增益点(0dB)交点频率是1MHz。0dB频率通常称为回路带宽(loop bandwidth)。相位偏移图表示了零、极点的不同分布对反馈信号的影响。根据分布的零极点计算相移的总和。在任意频率(f)上的极点相移,可以通过下式计算获得:

  极点相移= -arctan(f/fp)

  在任意频率(f)上的零点相移,可以通过下式计算获得:

  零点相移= -arctan(f/fz)

  此回路稳定么?为了回答这个问题,我们只需要知道0dB时的相移(是1MHz)。根本无需复杂的计算。

  前两个极点和第一个零点分布使相位从-180°变到+90°,最终导致网络相位转变到-90°。最后一个极点在十倍频程中出现了0dB点。使用零点相移公式,该极点产生了-84°的相移(在1MHz时)。加上原来的-90°相移,全部的相移是-174°(也就是说相位裕度是6°)。该回路可能引起振荡。

  NPN 稳压器补偿

  NPN 稳压器的导通管的连接方式是共集电极的方式。所有共集电极电路的一个重要特性就是低输出阻抗。也就意味着电源范围内的极点出现在回路增益曲线的高频部分。由于NPN稳压器没有固有的低频极点,所以它使用了一种称为主极点补偿(dominant pole compensaTIon)的技术。此时,在IC的内部集成了一个电容,该电容在环路增益的低频端添加了一个极点。

  NPN稳压器的主极点(P1)一般设置在100Hz处。100Hz处的极点将增益减小为-20dB/十倍频程直到3MHz处的第二个极点(P2)。在P2处,增益曲线的斜率又增加了-20dB/十倍频程。P2点的频率主要取决于NPN功率管及相关驱动电路,因此有时称此点为功率极点(Power pole)。因为P2点在回路增益为-10dB处出现,也就表示了0dB频率处(1MHz)的相位偏移会很小。

  为了确定稳定性,只需要计算0dB频率处的相位裕度:

  第一个极点(P1)会产生-90°的相位偏移,但是第二个极点(P2)只增加了-18°的相位偏移(1MHz处)。也就是说0dB点处的相位偏移为-108°,相位裕度为72°(非常稳定)。应该提起注意的是,回路很显然是稳定的。因为需要两个极点才有可能使回路要达到-180°的相位偏移(不稳定点),而P2又分布在高频位置,它在0dB处的相位偏移就很小了。

  LDO稳压器的补偿

  LDO稳压器中的PNP导通管的接法为共射方式(common emitter)。它相对共集电极方式有更高的输出阻抗。由于负载阻抗和输出容抗的影响在低频程处会出现低频极点(low-frequency pole)。此极点(称为负载极点(load pole)用Pl表示)的频率由下式获得:

  F(Pl) =1/(2π×Rload×Cout)。从此式可知,不能通过简单的添加主极点的方式实现补偿。

  为了解释为什么会这样,先假设一个5V/50mA的LDO稳压器有下面的条件:

  在最大负载电流时,负载极点(Pl)出现的频率为:

  Pl=1/(2π×Rload×Cout)=1/(2π×100×10-5)=160Hz

  假设内部的补偿在1kHz处添加了一个极点。由于PNP功率管和驱动电路的存在,在500kHz处会出现一个功率极点(Ppwr)。

  假设直流增益为80dB。Rl =100Ω(在最大负载电流时的值),Cout=10uF。

  可以看出回路是不稳定的:极点PL和P1每个都会产生-90°的相移。在0dB处(此例为40kHz),相移达到了-180°为了减少负相移(阻止振荡),在回路中必须要添加一个零点。一个零点可以产生+90°的相移,它会抵消两个低频极点的部分影响。基本上所有的LDO稳压器都需要在回路中添加这个零点。该零点一般是通过输出电容的一个特性:等效串联电阻(ESR)获得的。

  使用ESR补偿LDO

  等效串联电阻(ESR)是每个电容共有的特性。可以将电容表示为电阻与电容的串联。输出电容的ESR在回路增益中产生一个零点,可以用来减少负相移。零点出现的频率值与ESR和输出电容值直接相关:Fzero= 1/(2π×Cout×ESR)。使用上一节的例子,我们假设输出电容值Cout=10uF而且输出电容的ESR=1Ω。则零点发生在16kHz。

  添加此零点如何使不稳定系统变为稳定系统:

  回路的带宽增加了所以0dB的交点频率从30kHz移到了100kHz。到100kHz处该零点总共增加了+81°相移。也就是减少了PL和P1造成的负相移。因为极点Ppwr处在500kHz,在100kHz处它仅增加了-11°的相移。累积所有的零、极点,0dB处的总相移现在为-110°。也就是有+70°的相位裕度,系统非常稳定。这也就解释了具有正确ESR值的输出电容是可以产生零点来稳定LDO系统的。

关键字:线性稳压器 编辑:冰封 引用地址:线性稳压器件补偿和波特图解析

上一篇:开关式交流稳压电源的设计
下一篇:低压差直流稳压电源设计

推荐阅读最新更新时间:2023-10-18 15:17

MIC5158组成的输出大电流的线性稳压器电路
MIC5158组成的输出大电流的线性稳压器电路
[电源管理]
MIC5158组成的输出大电流的<font color='red'>线性稳压器</font>电路
几种线性稳压器的技术分析
每种线性稳压器都有各自的优缺点,最终得由设计师根据压差、接地电流和稳定性补偿方法等要求,确定某种类型稳压器是否适合设备使用。 电压差和接地电流值主要由线性稳压器的旁路元件(passelement)确定,电压差和接地电流值定了后就可确定稳压器适用的设备类型。目前使用的五大主流线性稳压器每个都具有不同的旁路元件(passelement)和独特性能,分别适合不同的设备使用。 标准NPN稳压器的优点是具有约等于PNP晶体管基极电流的稳定接地电流,即使没有输出电容也相当稳定。这种稳压器比较适合电压差较高的设备使用,但较高的压差使得这种稳压器不适合许多嵌入式设备使用。 对于嵌入式应用而言,NPN旁路晶体管稳压器是一种不错的选择,因为它的压差小
[电源管理]
兼作电压监控电路的低压降线性稳压器
  很多低压降稳压器都带有一个使能输入脚,它可以用作一个廉价的电压监控IC。虽然使能脚通常是用于切断稳压器的输出以节省功耗,但增加几个分立元件就可以使稳压器输出控制相应输入电压下的通、断。因此,可以将此电路用作一个电压监控器或一个特性受控的线性稳压器。   一个典型低压降稳压器内部的使能电路含有一个电压比较器,用于确定使能脚上的电压是否高于或低于内部基准电压VREF。虽然可以直接将使能脚连接到非稳压输入电压上,从而建立一个低压降电压监控器,但这种电路的通、断电压与基准电压相等,而它一般要低于由稳压器输出供电IC的最小工作电压。   另外,直接将使能脚连接到未稳压的输入端无法提供一个接通延迟以保证输入电压达到的值高于低压降稳压器的降
[电源管理]
兼作电压监控电路的低压降<font color='red'>线性稳压器</font>
MAX8863 利用外部晶体管降低线性稳压器压差
晶体管是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常之快,在实验室中的切换速度可达100GHz以上。
[模拟电子]
超低压差线性稳压器的拓扑架构及应用趋势
  近年来,低压差稳压器(LDO)在各类电子设备,尤其是对电能有苛刻需求的消费类电子中,得到了广泛的应用。但随着更低压差应用需求的发展,由于LDO拓扑架构的限制,越来越难以满足应用的需求。于是,基于新型拓扑架构的超低压差稳压器(ULDO)应运而生。    ULDO与LDO的差异   LDO是一种用途极为广泛的集成电路(IC),它的优点有:电路架构简单、输出纹涟波很低、外部组件很少且简单等等。一般的LDO架构为:一个误差放大器驱动一个P型MOSFET,利用回授电位与参考电位做比较,使输出保持在正确的电压。但是当系统中需求的是超低压差、低输出电压(0.8~1.8V)、高输出电流时,用传统单电源、P-MOSFET的架构来设计L
[电源管理]
低压差电压 (VLDOTM) 线性稳压器LT3022
描述   LT®3022 是一款非常低压差电压 (VLDOTM) 线性稳压器,采用低至 0.9V 的单输入工作电源。该器件可提供高达 1A 的输出电流和 145mV 的典型压差电压。LT3022 非常适合于低输入电压至低输出电压应用,可提供与开关稳压器相当的电效率。稳压器利用小至 10μF 的低 ESR 陶瓷输出电容器优化了稳定性和瞬态响应。LT3022 的其他特点包括 0.05% 的典型电压调整率和 0.05% 的典型负载调整率。在停机模式中,静态电流通常下降至 7.5μA。内部保护电路包括反向电池保护、电流限制、具迟滞的热限制和反向电流保护。   LT3022 可用作一款可调型器件,并具有一个低至 200mV
[模拟电子]
低压差电压 (VLDOTM) <font color='red'>线性稳压器</font>LT3022
线性稳压器LT3083提供优越的AC和DC性能
将稳压器并联以提高电流并分散热量   图3显示了怎样将多个LT3083并联,以提高输出电流并分散热量。请注意,在稳压器之间平衡负载所需的镇流器是最小的。仅通过增加更多LT3083,就有可能产生低噪声和准确的大电流表面贴装电源。功耗在并联的稳压器之间均匀分布,不过热量管理仍然是必要的。由于跨稳压器的压降低至0.5V,所以一个3A负载相当于1.5W功耗,从而提高了表面贴装设计的热性能。 图3:将多个稳压器并联以实现更大的电流并分散热量    大电流基准缓冲器   建立一个大电流基准缓冲器所需工作非常少,如图4所示。在这个电路中,连接LT1019-5的输出,以吸收稳压器50μA的基准电流。该基准在整个温度范围内
[模拟电子]
<font color='red'>线性稳压器</font>LT3083提供优越的AC和DC性能
高性能、低饱和线性稳压器的开发
  在整机设备不断实现小型化和省电化的今天,功耗小的低漏失线性稳压器(LDO)正成为开关电源用线性稳压器市场的主流。为了实现高性能和高速度,设备内部采用的微型计算机或数字信号处理器(DSP)工艺年年都在取得突飞猛进的进步和发展,与此同时,这些微型计算机或数字信号处理器必不可少的电源电压也越来越低。另外,不同制造工艺对应的电压各自存在差异,因此要求各种各样的供电电压。为解决这一问题,各生产厂商开始在开关电源设定中间电压,利用LDO稳压器提供LSI电源的新技术手段。另一方面,在电池设备中也使用大电流的LDO稳压器,力求最大限度地有效利用电池电压。   先使用DC/DC转换器从高输入电源取得5V左右电压,然后利用线性稳压器降压成3.
[医疗电子]
高性能、低饱和<font color='red'>线性稳压器</font>的开发
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved