便携式系统开关电源PCB排版技术

最新更新时间:2011-09-03来源: 电源网关键字:开关电源  PCB排版技术 手机看文章 扫描二维码
随时随地手机看文章

当今, 由于开关电源会产生电磁波而影响到其电子产品的正常工作,则正确的电源PCB排版技术就变得非常重要。

许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB排版存在着许多问题.例如,对一个消费类电子设备上的降压式开关电源原理图来说,设计人员应能够在此线路图上区分功率电路中元器件和控制信号电路中元器件,但如果设计者将这电源中所有的元器件当作数字电路中的元器件一样来处理,则问题会相当严重。开关电源PCB排版与数字电路PCB排版完全不一样。在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列且芯片之间的连接线可以通过PCB软件来自动连接。用自动排版方式所排版出的开关电源肯定无法正常工作。所以,设计人员需要掌握和了解正确的开关电源PCB排版技术规则。

开关电源PCB排版技术规则

旁路瓷片电容器的电容量不能太大,而它的寄生串联电感量应该尽量减小。多个电容器并联能改善电容的高频阻抗特性。

当一个电容器工作频率在fo以下时,电容阻抗Zc随频率的上升而减小;当电容器工作频率在fo以上时,电容阻抗Zc会变得像电感阻抗一样随频率的上升而增加;当电容器工作频率接近fo时,电容阻抗就等于它的等效串联电阻(RESR)。

电解电容器一般都有很大电容量和很大等效串联电感。由于它的谐振频率很低,所以只能使用在低频滤波上。钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。由于小电容量瓷片电容器的谐振频率会比大电容量瓷片电容器的谐振频率要高,因此在选择旁路电容时不能光选用电容值过高的瓷片电容器。为了改善电容的高频特性,多个不同特性的电容器可以并联起来使用.图1(a)是多个不同特性的电容器并联后改善的阻抗效果。通过分析就不难理解此排版规则的重要了。图1(b)显示了在一个PCB上输入电源(VIN)至负载(RL)的不同走线方式。为了降低滤波电容器(C)的ESL,电容器引脚的引线长度应尽量减短:而VIN 正极至及RL 和VIN负极至RL的走线应尽量靠近。

图1(a) 多个电容器并联可改善阻抗特性              图1(b) 滤波电路PCB走线方式A差,B好

电感的寄生并联电容量应该尽量减小,电感引脚之间的距离越远越好

图2(a)中的电流环路类似于只有一圈线圈绕组的电感。可以看到高频率交流电流所产生的电磁场B(t)会环绕在此环路的外部和内部。如果高频交流电流环路面积(Ac)很大,就会在此环路的内外部产生很大的电磁干扰。

图2(a) 为电流环路类似于只有一圈线圈绕组的电感

当一个电感工作频率在fo以下时,电感阻抗随频率的上升而增加;当电感工作频率在fo以上时,电感阻抗随频率的上升而减小;当电感工作频率接近fo时,电感阻抗就等于它的等效并联电阻(REPR)。

在开关电源的应用中电感的等效并联电容(CP)应该控制得越小越好。同时必须注意同一电感量的电感会由于线圈结构不同而产生不同的等效并联电容值(CP)。

图2(b)就显示了同一电感量的电感在二种不同的线圈结构下不同的等效并联电容值。

图2(b) 中第一种电感的五圈绕组是按顺序绕制。这种线圈结构所产生的等效并联电容值(CP )是单组线圈等效并联电容值(C)的五分之一。图2(b)中第二种电感的五圈绕组是按交叉顺序绕制。其中绕组#4和#5放置在绕组#1#2#3之间而绕组#1和#5非常靠近.这种线圈结构所产生的等效并联电容值(Cp)是单组线圈等效并联电容值(C)的两倍。

可以看到,相同电感量的两种电感的等效并联电容值居然相差达十倍。在高频滤波上如果一个电感的等效并联电容值太大,高频噪音就会很容易地通过它的并联电容而直接流到负载上。这样的电感也就失去了它的高频滤波功能。

图2(b) 不同线圈结构造成不同等效并联电容值

图2(c)显示了在一个PCB上输入电源(VIN)通过电感(L)至负载(RL)的不同走线方式。为了降低电感的Cp,电感的二个引脚应尽量远离。而VIN 正极至RL和VIN 负极至RL上的走线应尽量靠近。

图2(c) 滤波电路PCB走线方式 A差 B好

避免在地层上放置任何功率或信号走线。

图3(a)中的A图是当直流电流在一个接地层上方流过时的情景。此时在地层上的返回直流电流非常均匀地分布在整个地层面上。图3(a)中的B图显示当高频交流电流在同一个地层上方流过时的情景。此时在地层上的返回交流电流只能流在地层面的中间而地层面的两边则完全没有电流。假设图3(b)中的地层面是开关电源PCB上的接地层(Ground Plane),设计人员应该尽量避免在地层上放置任何功率或信号走线。一旦地层上的走线破坏了整个高频交流环路,该电路会产生很人的电磁波辐射而破坏周边电子器件的正常工作。

图3(a) 镜像面概念 A直流 B交流图                3(b) 地层面上走线造成接地层的破坏

高频交流环路的面积应该尽量减小

为了减小高频交流环路所产生的电磁波噪音,该环路的面积应该控制得非常小。

如图4所示,如果高频交流电流环路面积Ac很大,就会在环路的内部和外部产生很大的电磁干扰。如果同样的高频交流电流,当环路面积设计得非常小时,环路内部和外部电磁场互相抵消,整个电路会变得非常安静。

图4 高频交流环路

过孔放置不应破坏高频交流电流在地层上路径

许多设计人员喜欢在多层PCB上放置很多过孔(VIAS)。但是必须避免在高频交流电流返回路径上放置过多过孔。否则,地层上高频交流电流走线会遭到破坏。如果必须在高频交流电流路径上放置一些过孔的话,过孔之间可以留出一些空间让高频交流电流顺利通过。图5(a)显示了过孔放置方式。

设计者同时应注意不同焊盘的形状会产生不同的串联电感。图5(b)显示了几种焊盘形状的串联电感值。

旁路电容(Decouple)的放置也要考虑到它的串联电感值。旁路电容必须是低阻抗和低ESL的瓷片电容。但如果一个高品质瓷片电容在PCB上放置的方式不对,它的高频滤波功能也就消失了。图5( c )显示了旁路电容正确和错误的放置方式。

图5(a) 过孔放置方式图    5(b) 焊盘寄生串联电感图     5(c) 旁路电容正确和错误的放置方式

电源直流输出

许多开关电源的负载远离电源的输出端口。为了避免输出走线受到电源自身或周边电子器件所产生的电磁波干扰,输出电源走线必须像图6中那样靠得很近。输出电流环路的面积也必须减小。

图6 电源输出直流电流环路


 

系统板上不同电路需要不同接地层,不同电路的接地层通过单点与电源接地层相连接

新一代电子产品系统板上会同时有模拟电路、数字电路及开关电源电路。为了减小开关电源噪音对敏感的模拟和数手电路的影响,通常需要分隔不同电路的接地层。如果选用多层PCB,不同电路的接地层可由不同PCB板层来分隔。如果整个产品只有一层接地层,则必须像图7中那样在单层中分隔。无论是在多层PCB上进行地层分隔或是在单层PCB上进行地层分隔,不同电路的地层都应该通过单点与开关中源的接地相连接.

图7 电路接地层与电源接地层的单店连接

开关电源PCB排版技术规则应用举例

回到图8(a)的开关电源原理图;通常首先需要知道电源高频交流电流的路径,并能够区分小信号控制电路和功率电路元器件及其走线、图8(a)将传统电源原理图(即,没有粗黑线的电路图)区分成控制电路部分和功率电路部分。一般来讲,电源的功率电路主要包括输入滤波电容,输出滤波电容,滤波电感,上下端功率场效应管。控制电路主要包括PWM控制芯片,旁路电容,自举电路,反馈分压电阻,反馈补偿电路。

图8(a) 电源控制电路(细线)和功率电路(粗线)

电源功率电路PCB排版

电源功率器件在PCB上正确的放置和走线将决定整个电源工作是否正常。图8(b)更进一步显示一个降压式开关电源功率电路元器件上的电流和电压波形。由于从输入滤波电容(CIN),上端场效应管(Q1)和下端场效应管(Q2)中所流过的电流是带有高频率和高峰值的交流电流,所以由CIN-Q1-Q2所形成的环路面积要尽量减小。同时由下端场效应管(Q2),电感(L),和输出滤波电容(Cout)所组成的环路面积也需要尽量减小。

图8(b) 开关电源功率电路上的电流和电压

如果未按照上述PCB排版技术规则的要点来制作功率电路PCB,很可能制作出有许多错误的电源PCB。

图8(c)是一个比较好的电源功率电路PCB走线。

图8(c) 正确的开关电源功率器件放置和走线

CIN-Q1-Q2和Q2-L-Cout环路的面积已控制得最小。上端场效应管(Q)的源极,下端场效应管(Q2)的漏极和输出电感(L)之间的连接点是一整块铜片焊盘。由于该连接点上的电压是高频和交流,Q1和Q2和乙需要靠得非常近。虽然输出滤波电感(L)和输出滤波电容(Cout)之间的走线上没有高峰值的高频交流电流,但比较宽的走线可以降低直流阻抗的损耗使电源的效率得到提高。如果成本上允许,电源可用一面完全是接地层的双面PCB。但必须注意在地层上尽量避免走功率和信号线。在电源的输入和输出端口还各增加了一个瓷片电容器来改善电源的高频滤波性.

电源控制电路PCB排版

电源控制电路PCB排版技术规则应是控制芯片至上端和下端场效应管的驱动电路环路要尽量短。

电源控制电路PCB排版也是非常重要。不合理的排版会造成电源输出电压的漂移和振荡。控制线路应放置在功率电路的边上,绝对不能放在高频交流环路的中间。旁路电容要尽量靠近芯片的Vcc和接地脚(GND)。反馈分压电阻最好也放置在芯片附近。芯片驱动至场效应管的环路也要尽量减短。

结语

上述开关电源PCB排版的排版技术规则要点应在实践中逐步掌握与应用,使所设计的便携式开关电源的高质量符合便携式电子糸统的指标。


 

关键字:开关电源  PCB排版技术 编辑:冰封 引用地址:便携式系统开关电源PCB排版技术

上一篇:开关电源无模型控制的研究
下一篇:模块电源的热测试

推荐阅读最新更新时间:2023-10-18 15:38

一种基于单片机的数控开关电源的设计应用
   1、引言   现实的生活和实验中,常常要用到各种各样的电源,电压要求多样。如何设计一个电压稳定,输出电压精度高,并且调节范围大的电压源,成了电子技术应用的热点。在市面上,各种电源产品各式各样,有可调节的和固定的。但是普遍存在一些问题,如转换效率低,功耗大,输出精度不高,可调节范围过小,不能满足特定电压的要求,输出不够稳定,纹波电流过大,并且普遍采用可调电阻器调节,操作难度大,易磨损老化。   针对以上问题,本文采用基于KA3525  PWM控制芯片的不对称半桥式功率变换器,并采用16位凌阳单片机作为数控核心,通过其内置的D/A输出调制PWM,提高了电源的输出精度和效率,并且方便使用者操作,实现了基于单片机的数控开关电
[电源管理]
开关电源中的辅助电源系统及其设计
1 引言   开关电源一般由功率主回路、辅助电源和控制回路组成。功率主回路主要用来给用户负载供电,而开关电源的辅助电源主要用来给功率主回路的控制电路、驱动电路或电源系统的监控电路供电。   辅助电源的设计不但影响到整个电源的体积、效率、稳定性、可靠性和成本,而且还将影响到整个开关电源的设计策略。一个重要的原因就是隔离问题。例如在离线式开关电源中,如果其内部的辅助电源和功率主回路输入共地,那么就需要用光耦或变压器来对输出电压采样信号进行隔离,见图1。而如果是内部辅助电源和功率主电路输出共地,则一般不需要对电压采样信号隔离,这时只需对驱动信号隔离。 图1 辅助电源和输入共地   2 开关电源辅助电源的特点及种类   由于所需辅助电
[电源管理]
<font color='red'>开关电源</font>中的辅助电源系统及其设计
高频开关电源控制电路与驱动电路的隔离方法
  变压器最适合于传递高频信号,同时也可以传递驱动功率,因此很适合置于驱动电路与开关管之间。以反激开关调节系统为例,图所示为用驱动变压器Trl使驱动电路与主电路电气隔离的方法,在本例中,控制电路与转换器的输出端共地,PWM控制器产生的开关脉冲信号经过驱动电路功率放大后,再由驱动变压器控制开关管V,保证了电路的隔离。   图 采用变压器隔离的反激转换器系统
[电源管理]
高频<font color='red'>开关电源</font>控制电路与驱动电路的隔离方法
四种典型开关电源电路设计
   开关电源工作形式的选择:  在开关电源电路中,基本类型有4种:单端反激式、单端正激式、半桥式和全桥式。对于100 W以下的开关电源,多采用单端反激式变换器,反激式功率变换电路中的变压器,除了起隔离作用之外,还具有储能的功能。反激式功率变换电路结构比较简单,输出电压不受输入电压的限制,亦可提供多路电压输出TOPSwitchⅡ系列应用于单端反激式变换器,典型用法所示: 图a 图b 图c 图d    电路分析: (a)将偏置线圈通过限流电阻直接作为TOPSwitchⅡ控制极的输入;(b)在(a)的基础上增加了稳压管,是(a)的增强型;(c)中输出电压通过 光耦 作用于TOPSwitchⅡ控制极,在输出电压反馈精度上有所
[电源管理]
四种典型<font color='red'>开关电源</font>电路设计
开关电源中几种过流保护方式的比较
摘要:在输出短路或过载时对电源或负载进行的保护,即为过电流保护,简称过流保护。介绍了过流保护的几种型式,如フ字型、恒流型、恒功率型等,并进行了比较。 关键词:过流保护;检测;比较 引言 电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。 1 开关电源中常用的过流保护方式 过电流保护有多种形式,如图1所示,可
[电源管理]
变频器开关电源的检修思路和检修方法
变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。      看一下电路中有几路脉络。   1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。   当然,PC
[电源管理]
变频器<font color='red'>开关电源</font>的检修思路和检修方法
LinkSwitch—TN系列节能型单片开关电源的电路设计
摘要:在某些家用电器的控制电源以及智能化电能表、住宅供热控制器中,允许使用非隔离电源。介绍了一种LinkSwitch-TN系列单片开关电源,可取代传统的阻容降压式线性电源,为实现高效节能型小功率开关电源的优化设计创造了有利条件。 关键词:节能;单片开关电源;Buck电路;BuckBoost电路;设计 引 言 某些电子设备和家用电器并不需要使用输入与输出完全隔离的开关电源。例如,直流电机的驱动电源,空调、无霜冰箱和微波炉中的稳压电源,它们本身就属于隔离系统,因此可由非隔离式开关电源供电,但要求这种开关电源的电路简单、电源效率高。 PI公司于2004年1月最新推出LinkSwitch—TN系列四端非隔离式、节能型
[应用]
基于TOPSwitch的超宽输入隔离式稳压开关电源
摘要:介绍了单片开关电源芯片TOPSwitch的结构及工作原理,给出了超宽输入隔离式稳压开关电源的完整应用电路实例,并对设计和制作过程中的一些注意事项进行了说明。 关键词:隔离;宽输入;开关电源 引言 开关电源(SwitchingPowerSupply)自问世以来,就以其稳定、高效、节能等优良性能而成为稳压电源的主要产品。而高度集成化的单片开关电源,更是因其高性价比、简单的外围电路、小体积与重量和无工频变压器隔离方式等优势而成为稳压电源中的佼佼者。随着各种不同的单片开关电源芯片及其电路拓扑的应用和推广,单片开关电源越来越体现出巨大的实用价值和美好前景。但是,TOPSwitch通常允许的输入电压变化范围为120~370V,本
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved