一种环真空监控系统设计方案

最新更新时间:2011-09-08来源: chinaaet关键字:现场控制技术  CAN协议 手机看文章 扫描二维码
随时随地手机看文章

  传统的现场控制技术(例如BITBUS,RS-485,RS-422等)其不足之处主要有:

  (1)主从结构网络上只能有一个主节点,其余为从节点。其造成的潜在危害是:一旦主节点出现故障,则整个系统将处于瘫痪状态。

  (2)数据通讯方式为命令响应型。在许多实时性要求较高的场合,这是致命的弱点。错误处理能力不强。

  (3)不能提供类似LAN那样的网络管理(network management)功能,从而不能对整个系统进行实时、有效、方便的监控和维护。

  现场总线很好地解决上述问题。其中较有代表性的有Motorola的LON(local operation network);Bosch公司的CAN(control area network)。其中LON适用于一些大型的、对响应时间要求不太高的分布式控制系统;而CAN则适用于小型的、实时要求高的系统。 

  CAN协议规定的网络系统结构由ISO-OSI七层结构中的三层组成,即物理层、数据链路层和应用层。它是一种专门用于工业自动化领域的网络,不同于以太网等管理及信息处理网络,其物理特性和网络协议更强调自动化的底层监测和控制。从物理结构上看,它属于总线式通讯网络,但其独特的技术和设计,可靠性及性能远高于BITBUS,RS-485等传统现场控制技术。特点主要有:可以多主方式工作,网络节点可分优先级,采用非破坏性总线裁决技术,直接通讯距离最远可达10 km(5 kb/s以下),通讯速率最高可达1 Mb/s(距离40 m),信息传输采用短帧结构,每帧信息都有CRC校验,保证了数据出错率极低,在错误严重的情况下节点可以自动关闭,切断与总线的联系,通讯介质采用双绞线。

  1 系统组成和工作原理

  合肥国家同步辐射实验室(NSRL)的储存环直径为22 m,每条光束线的长度约15 m。用于环真空检测的真空计约10台,5条光束线平均5台真空计,共计约35台真空检测装置,另外每条光束线还利用一台真空计作为传感器用于真空联锁保护装置。由于真空检测装置及联锁保护装置必须靠近监测点,它们遍布整个储存环大厅。这些真空计是84年建立实验室后逐年购进的,基本没有数据通讯接口,制造厂家也千差万别。储存环真空检测主要有德国、日本、美国的真空计,光束线主要是国产真空计。可用于真空检测的模拟电平也不尽相同,另外储存环大厅有很多电磁铁和高功率电源,是典型的强噪声环境,用模拟电平进行监测控制和组网是不切实际的,也是不可靠的。因此目前NSRL的环真空监测是采用人工记录的方法,光束线真空监测基本不作记录。目前光束线用于控制各种阀门的真空联锁保护装置是模拟电路系统,为了提高响应速度,直接从真空计的离子流放大器上取出0~10 V的模拟电平,与联锁保护装置的连接电缆阻抗非常高,很容易造成阀门的错误关断,也容易影响真空计的读数,甚至损坏真空计的离子流放大器。所有这些关系到束流运行的稳定和寿命,是迫切需要解决的。

  经过多方调研和比较,提出采用适合于高噪声环境运行的CAN总线组网。多个真空计及其联锁保护单元通过CAN控制器挂到CAN总线上,通过CAN总线与监控计算机互联,形成多主机局部控制网。目前NSRL的储存环和光束线需要监控的节点约40个,二期改建工程完成后需要监控的节点将扩大到80个,而一条CAN网络可控制110个节点,完全能满足要求。该分布式测控系统结构组成如图1所示。

  该系统的工作原理是通过监控计算机、真空传感器(真空计)、真空联锁保护单元,对储存环、光束线的真空状态和各阀门的开关状态进行实时监控。监控计算机根据实测值与安全设定值进行比较、分析和处理,及时提供语音、字符、图形、各种报警信号及相应的控制措施。由于储存环、光束线实验站的真空状态要求相差很大,为了提高对真空事故的反应速度和可靠性,储存环和每个光束线实验站有相应的真空联锁保护单元。该单元直接接收来自真空传感器的报警信号,可自动地或人为地作出相应的安全控制措施。该单元也通过CAN控制器挂到CAN总线上,使各种不安全因素得以及时、有效地调整和控制。

  2 系统硬件组成

  如图1所示,该系统硬件主要由监控计算机、真空传感器和真空联锁保护单元等几部分组成。

  (1)监控计算机由通用PC机加PC-CAN适配卡及多媒体外设构成。PC-CAN适配卡采用国产的Hilon系列CAN总线工控产品,随卡的软件包可支持用户开发专用的监控和驱动程序。

  (2)真空传感器由规管和真空计组成。本实验室大多使用热阴极电离超高真空计和冷阴极磁控超高真空计。根据多年的使用经验,国外品牌性能较稳定、可靠,而国内品牌相比之下较差,返修率也非常高。为此根据不同规管特性要求和结合国外产品经验的基础上开发出两种类型的超高真空计:热阴极电离超高真空计和冷阴极磁控超高真空计。

  热阴极电离超高真空计的内核为51系列单片机。经过细致的布线、制版和抗干扰设计,其A/D模块可准确测量300 fA~1 μA的离子流,已超出大多数热阴极电离规正常工作时收集的离子流范围。规管阴极灯丝电源设计为开关电源(100 kHz),可提供0~5 A的电流,能有效驱动国外的大功率规管,保护性能极好。非易失性SRAM和时钟芯片可提供真空报警阈值设定及时钟。报警输出采用20 mA电流环,便于光隔离和抗干扰。报警反应时间小于200 ms,满足除快阀外对一般阀门的控制。通讯接口有RS232C和CAN。CAN接口采用Philips公司的82C200通讯控制器和82C250总线收发器[2]。另外采用Watchdog技术和数字滤波以增加可靠性。软件用工程C语言编写。显示采用6位高亮度数码管。键盘功能包括:除气、发射、报警阈值设定、时间显示等功能。根据规管生产厂家提供的离子流与真空度曲线,目前该真空计适用于日本ANLVA公司的954-7902型规管,美国Varian公司的UHV-24型规管,以及国产的DL7和M001型规管。图2的Gao.Hot是在本实验室按照ISO/DIS3568国际标准建造的比对系统上为该真空计做的比对结果,使用的规管为954-7902型规管。图中的横坐标为BALZERS公司的IMG040型真空计的测量值,相当于二次标准。

  冷阴极磁控超高真空计的设计除规管所需电源为高压电源外,其它类似于热阴极电离超高真空计。高压电源采用为微通道板和光电倍增管设计的高精度电源模块,其结构紧凑、小巧。目前该真空计适用于BALZERS公司的IKR 020规管和国产M014型规管。比对结果如图2的Gao.Cold所示,使用的规管为IKR 020型规管。图中的弯曲是因为测试时的规管下限为1×10-7 Pa。

  (3)将冷阴极磁控超高真空计的设计简化后,用于光束线前端的快速关闭阀传感器及控制器,该传感器有两个20 mA电流环输出,一路用于关断快阀,一路去真空联锁保护控制器,用于联动光束线前端的水冷光屏和气动阀门。传感器所用规管位于光束线后端的实验站附近,报警阈值在1×10-1~1×10-5 Pa之间。在去除各种可能的窄脉冲干扰后,报警响应时间小于500 μs,最后快阀关断应小于7 ms[3]。

  (4)真空联锁保护控制器的设计强调可靠性和抗干扰性。设计中采用全隔离技术。单片机系统的5 V电源直接由目前流行的AC/DC开关电源功率模块得到,来自各种真空传感器的报警信号通过光偶阵列输入,数字系统的输出通过光偶阵列驱动开关阀门的功率可控硅阵列。由于开关无触点,使用寿命长。通讯接口CAN也通过两片数字式光偶隔离。工作框图如图3。该装置的工作方式分联锁控制和手控两种方式。在储存环、光束线实验站正常工作情况下,装置处于联锁状态;而在光束线调试的情况下,通常处于手控工作方式。需要手控工作时,必须敲入密码方可进入。由于手控工作时必须能任意开关控制各阀门,本设计最多可驱动24个阀门。一片8243用于扩展输出口,一片可编程的GAL16V8可以在出现异常情况时进行必要的逻辑处理和控制。由于开关阀门所需的组合逻辑完全是可编程的,因此同一设计可以适用于不同类型的光束线实验站。

  3 系统软件设计

  基于PC的数据采集和处理系统能够利用PC机所有强大的数据运算、存储能力和优良的编程环境。系统软件设计采用NI公司的图形化虚拟仪器平台LabVIEW,另外现在众多国内厂家及NI公司也提供包括PC/CAN,RS232C/CAN,RS485/CAN等现场总线硬件产品。利用这些硬件产品,使用NI的编程平台很容易构筑专用的测控系统。由于该系统在Win95平台下构造,可以充分利用其提供的各种多媒体功能,应用多种手段实现良好的人机界面,从而容易实现强有力的分析和处理等功能。

  整个监控系统画面结构框图如图4所示,主要由六部分组成,其中控制和监测子系统画面中可以显示该子系统的所有主要真空计、各阀门的开关状态、重要参数以及各参数的实时曲线和历史曲线;报警子画面显示整个系统顺序发生的所有报警事件、时间;参数数据库实时记录整个系统所有重要参数变化。其中参数数据库可通过DDE功能和利用Excel实现。

  4 结语

  本系统的最终完成和实施,必将提高NSRL真空监测和联锁保护的可靠性及实时性,也将使NSRL的现场测控技术提高到一个新的水平,并向国际水平靠拢。作为现场总线的典型应用,也将有极高的推广价值。

关键字:现场控制技术  CAN协议 编辑:探路者 引用地址:一种环真空监控系统设计方案

上一篇:轻松从PoE过渡至PoE+的设计方案
下一篇:TD-SCDMA双通道增强覆盖技术探讨

推荐阅读最新更新时间:2023-10-18 15:40

can总线通讯协议
随着集成电路和嵌入式电脑在汽车上的广泛应用,现代汽车上的电子控制器的数量越来越多,常见的有发动机的电子燃油喷射装置、防抱死制动装置(ABS)、安全气囊装置、电动门窗装置、主动悬架等。电控系统的增加虽然提高了轿车的动力性、经济性和舒适性,但随之增加的复杂电路也降低了汽车的可靠性,增加了维修的难度。从布线角度分析,传统的电子气系统大多采用点对点的单一通信方式,相互之间少有联系,这样必然造成宠大的布线系统。因此,一种新的概念——汽车上电子控制器局域网络CAN,也就应运而生。为使不同厂家生产的零部件能在同一辆汽车上协调工作,必须制定标准。按照ISO有关标准,CAN的拓扑结构为总线,因此称为CAN总线。CAN总线被设计作为汽车环境中的微控制器
[嵌入式]
PIC18单片机的CANopen通信协议简介及设计
CAN总线由于具有实时性和可靠性高、组网成本低等优点,近年来在汽车工业、楼宇自动化、工厂自动化、机器人控制等领域得到广泛应用。CANopen协议不仅定义了通信规范,而且为可编程系统、不同器件、接口等设备应用子协议定义了大量的行规。遵循CANopen协议开发出的设备能实现不同生产厂家的产品间的互操作。 要掌握CANopen协议,重点是对对象字典和设备模型的理解以及对4类通信对象的掌握。本文先对CANopen协议进行削析,再重点介绍在PICl8F458单片机上开发基于CANopen协议的节点,最后通过温度测控系统实验验证了系统信息传递的可靠性、准确性和实时性。 1 CANopen通信协议简介 CANopen协议是C
[单片机]
PIC18单片机的<font color='red'>CAN</font>open通信<font color='red'>协议</font>简介及设计
基于LabVIEW和J1939协议CAN总线通讯平台开发
   应用领域: 商用车CAN 总线通讯   挑战:CAN2.0B 规范的工业总线通讯、报文标识符和数据帧定义没有形成统一的标准,参数定义   随意性很大。商用车CAN 总线通讯标准,遵循建立在CAN2.0B 基础上的SAE J1939 协议。报文标识   符ID,按照SAE 标准制定的车速、发动机转速、扭矩、温度、压力、燃油消耗量等参数的物理定   义,报文数据帧格式对应协议数据单元相应数据内容的封装。面临的挑战是将J1939 协议融会贯通   于CAN 总线通讯平台的设计之中。    应用方案: 使用NI LabVIEW 软件开发平台和PXI 模块化仪器系统中的CAN 通讯模块,创建过滤   识别J
[嵌入式]
罗德与施瓦茨公司示波器引领CAN-FD高速接口协议分析
罗德与施瓦茨公司的RTE和RTO示波器是第一批实现CAN-FD接口协议测试分析解决方案的设备之一。新的选件发布帮助设计工程师分析高速CAN-FD总线协议。由于数据速率日益提高的需求,这个接口协议在汽车电子和工业应用领域广泛应用。 CAN-FD总线协议选件发布,支持高达15Mbps数据速率的总线控制局域网性能。优势在于现代汽车电子领域的管理解决方案。R&S RTx-K9选件使得R&S RTE和R&S RTO用户能够分析总线接口和协议触发。基于硬件解码分析能够使用示波器快速的找到错误,加速CAN FD接口协议测试的认证和调试过程。   客户可以直接触发报文起始,报文结束和数据值,并且可以采用高性能的搜索功能找出相关的事件。解码
[测试测量]
基于SAE J1939协议CAN总线汽车仪表设计
汽车仪表是汽车与驾驶员进行信息交流的窗口,是汽车信息的中心,能够集中、直观、迅速地反映汽车在行驶过程中的各种动态指标,如行驶速度、里程、电系状况、制动、压力、发动机转速、冷却液温度、油量、各种危险报警。随着科技进步,汽车排放、节能、安全和舒适性等使用性能不断提高,汽车电子控制程度也越来越高。汽车电子控制装置必须迅速、准确地处理各种信息,并通过仪表显示出来,使驾驶员能够及时了解并掌握汽车的运行状态,以妥善处理各种情况。 这里给出一种基于CAN(Controller Area Network)总线的汽车仪表设计方案。该仪表利用CAN总线使其成为车身网络一部分,遵循SAE J1939协议读取发动机转速、水温等信息。仪表还能接收传感器的车
[嵌入式]
全面了解CAN总线协议
  提及总线,总是让人联想到那些交错在一起的计算机电线。那么这些电线如何发挥功效呢?这还得配合总线协议的管理来使用。那么今天我们介绍的就是CAN总线协议。看看这个协议的含义和应用吧。   1,CAN总线协议基本概念:   (1),报文:总线上的信息以不同格式的报文发送,但长度有限。当总线开放时,任何连接的单元均可开始发送一个新报文。   (2),信息路由:在CAN系统中,一个CAN节点不使用有关系统结构的任何信息,这里包含一些重要的概念:系统灵活性——节点可以在不要求所有节点及其应用层改变任何软件或硬件的情况下,被接于CAN网络。报文通信——一个报文的内容由其标示符ID命名,ID并不指出报文的目的,但描述数据的含义,
[嵌入式]
CANopen协议在伺服电机控制系统中的实现
  基于现场总线的网络技术的研究是自动化领域发展的一个热点。CANopen协议是目前流行于欧洲的基于CAN总线应用层的标准协议。对工程设计者来说,研究现场总线的核心任务就是对控制节点进行开发。本文就是通过实现伺服电机控制模块的CANopen协议,说明一个基于CANopen协议的控制网络的组态。   伺服电机控制器在自动控制领域里有着广泛的应用,如纺织机械和印刷机等。为了得到理想的速控效果, 伺服电机模块除了要在分辨率、线性程度以及转换速率上达到一定的要求外,还应具有良好的在线可控性和实时在线状态检测功能。为此,利用CAN总线高层通信协议CANopen,结合陕西省教育厅“并条机自调匀整” 项目对伺服电机控制模块参数的要求,开发了一
[嵌入式]
CAN总线及CAN通讯协议
  CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。最初,CAN被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。比如:发动机管理系统、变速箱控制器、仪表装备、电子主干系统中,均嵌入CAN控制装置。         一个由CAN 总线构成的单一网络中,理论上可以挂接无数个节点。实际应用中,节点数目受网络硬件的电气特性所限制。例如,当使用Philips P82C250作为CAN收发器时,同一网络中允许挂接110个节点。CAN 可提供高达1Mbit/s的数据传输速率,这使实时控制变得非常容易。另外,硬件的错误检定特性也
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved