工程师“如何提高电源效率”

最新更新时间:2011-09-12来源: 电源网关键字:电源效率 手机看文章 扫描二维码
随时随地手机看文章
要想把变压器设计好,首先就需要选择好变压器。变压器的选择受到很多的因素制约,以前我在很多文章中多次说过,这里再次重复下。

首先,需要计算好变压器的Ap值,计算方法坛子里有很多相关的帖子,大家可以搜下,我在这里就不在赘述了。得到Ap值之后,我们就要根据电源的结构尺寸来初步选择变压器,包括变压器的高度,宽度以及长度。当电源的整体高度有限制时,就需要考虑扁平型的变压器,卧式变压器是首选。常见的有EE系列,EC系列,ER系列的卧式变压器,EF系列与EFD系列变压器;如果是超薄的适配器与LED日光灯内置电源,可以考虑平面变压器。

其次,在选择变压器的时候我们要根据电路的参数与侧重点不同,而选择不同的变压器。比如,在反激电源中,我们希望漏感越小越好,因为漏感大小会影响功率器件的电压电流应力,同时对EMC也有不可忽视的影响,那么我们就找对漏感控制有利的变压器,如PQ型,RM型,以及ERL型的变压器,再加上合理的绕法,可以将漏感控制在3%以下。又如LLC电源,我们希望用变压器的漏感来作为谐振电感,所以我们需要刻意加大漏感,选用分槽的骨架来绕制比较理想。

再次,在选择变压器的时候,要考虑到成本与通用性。成本不仅仅是每个企业老板关心的问题,同样是我们广大研发工程师最纠结的问题,除非是少数军品级别或高档不计成本的电源,我们在设计的时候要在性能参数与成本之间找到一个平衡点,不要刻意去追求某个参数而忽略带来的成本影响,有时哪怕每个变压器增加几分钱的成本,如果批量起来,都是不可忽略的一笔开支。除非由于商业因素的考虑,希望自己的产品不被其它的厂商所抄袭,一般不考虑私模或偏门的变压器磁芯与骨架,因为量产的时候,供货的渠道与周期都会受到很大的制约,而通用的磁芯,无论在价格上还是在供货渠道与周期都有很大的可选择性。

图片展示:

 


选择变压器的时候,还要考虑到为了符合安规标准,EMC性能:

首先,要考虑变压器骨架的绕线宽度,变压器为了符合安规中的爬电就离要求,一般都要在绕组边上加3mm的挡墙,那么这就缩小了变压器骨架的可用绕线宽度;而如果不加挡墙的话,就需要使用三重绝缘线,而三重绝缘线的外径一般比内部的铜线直径大0.2mm,那么,同样的窗口面积,绕线的匝数相当于减少了。

其次,要考虑变压器骨架的槽深,有时为了EMC,需要在变压器内部加入屏蔽层,有些用细线绕,有的用铜箔绕,这些绕组无疑会增加绕组的层数,也就是说可用于绕制变压器其他绕组的槽深就减少了。

选择变压器还要考虑到绕组装配工艺的影响。

很多的工程师在设计变压器的时候,没有考虑到装配工艺,往往会出现这样的情况:变压器计算好之后,把参数发给变压器厂做样;然后,变压器厂工程师打电话说绕不下,磁芯太紧,不好装配,不利于量产;最后不得不修改变压器参数;这样无疑会延缓项目的进度。所以在设计之初,我们就要考虑到变压器磁芯窗口的误差,以及绕线工艺、绝缘TAPE的厚度等因素,这些因素都会影响变压器的装配;我们在计算时应该对这些因素给予充分考虑,留有一定的余量。

上面谈了变压器的磁芯骨架选择考虑的问题,下面来谈谈变压器的绕制方法与注意事项。

普通分层绕法:

一般的单输出电源,变压器分为3个绕组,初级绕组Np,次级绕组Ns,辅助电源绕组Nb;当实用普通分层绕法时,绕制的顺序是:Np--Ns--Nb,当然也有的是采用Nb--Ns--Np的绕法,但不常用,原因大家可以先思考下,过几天我再分析。

此种绕法工艺简单,易于控制磁芯的各种参数,一致性较好,绕线成本低,适用于大批量的生产,但漏感稍大,故适用于对漏感不敏感的小功率场合,一般功率小于10W的电源中普遍实用这种绕法。

三明治绕法

三明治绕法久负盛名,几乎每个做电源的人都知道这种绕法,但真正对三明治绕法做过深入研究的人,应该不多。
相信很多人都吃过三明治,就是两层面包中间夹一层奶油。顾名思义,三明治绕法就是两层夹一层的绕法。由于被夹在中间的绕组不同,三明治又分为两种绕法:初级夹次级,次级夹初级。

先来看第一种,初级夹次级的绕法(也叫初级平均绕法)

如上图,顺序为Np/2,Ns,Np/2,Nb,此种绕法有量大优点。

由于增加了初次级的有效耦合面积,可以极大的减少变压器的漏感,而减少漏感带来的好处是显而易见的:漏感引起的电压尖峰会降低,这就使MOSFET的电压应力降低,同时,由MOSFET与散热片引起的共模干扰电流也可以降低,从而改善EMI;

由于在初级中间加入了一个次级绕组,所以减少了变压器初级的层间分布电容,而层间电容的减少,就会使电路中的寄生振荡减少,同样可以降低MOSFET与次级整流管的电压电流应力,改善EMI。

第二种,次级夹初级的绕法(也叫次级平均绕法)

如上图,顺序为Ns/2,Np,Ns/2,Nb。当输出是低压大电流时,一般采用此种绕法,其优点有二:

1、可以有效降低铜损引起的温升:由于输出是低压大电流,故铜损对导线的长度较为敏感,绕在内侧的Ns/2可以有效较少绕线长度,从而降低此Ns/2绕组的铜损及发热。外层的Ns/2虽说绕线相对较长,但是基本上是在变压器的外层,散热良好故温度也不会太高。

2、可以减少初级耦合至变压器磁芯高频干扰。由于初级远离磁芯,次级电压低,故引起的高频干扰小。

这个是220V输入时满载,MOSFET的Vds的波形。

这个是260V输入时,MOSFET的Vds波形。



下面,我们大家来进一步深入讨论下这个三明治绕发对EMI的影响

首先,我们来看初级夹次级的绕法。

我们知道,变压器的初级由于电压较高,所以绕组较多,一般要超过2层,有时甚至达到4-5层,这就给变压器带来一个分布参数---层间电容,形成原理相信大家都清楚,我就不多解释了。

MOSFET关断的时候,变压器的漏感与MOSFET的结电容以及变压器的层间电容会产生振动,幅度达到几十甚至超过一百V,这对MOSFET与EMI来说都是不允许的,所以,我们增加RCD吸收来抑制这个振荡,达到保护MOSFET与改善EMI的目的。

上图即为反激电源MOSFET的Vds波形。

从这个角度来说,三明治绕法是可以在一定程度上改善EMI。从另外一个角度来说,三明治绕法确实是增加了初次级的耦合面积,减少了漏感,同时又使初次级的耦合电容增加了;当开关管反复开关时,电容也会反复充放电,也就是说会引起振荡,此振荡正比于开关频率,会对EMI产生不利的影响。 电源网原创转载请注明出处)

 




关键字:电源效率 编辑:冰封 引用地址:工程师“如何提高电源效率”

上一篇:如何避免开关电源设计中PCB电磁干扰
下一篇:以节能为标杆 电源拓扑结构该如何选择

推荐阅读最新更新时间:2023-10-18 15:42

提高LED驱动电源效率的八大技巧
照明驱动电源提高效率的技巧   1.主电流回路PCB尽量短。   LAYPCB的经验,及布局,这个没什么,快速的方法就是多看大厂的作品。   2.优化变压器参数设计,减少振铃带来的涡流损耗。   这个比较难,先要把电磁基础知识掌握,设计合理的变压器,最要紧的是耐心,哪怕是想到能提高0.5%的效率,也要去尝试。    3.合理选用开关器件。    这个就是成本和性能的平衡了,什么样的客户要求,用什么样的器件,但得合理。如果要效率,毫无疑问COOL MOS ,低VF输出二极管   4.输入EMI部分优化设计   如果过安规,这部分考究得比较多,主要就是经验了。   5.选择高效率的拓补结构   这个是方案选型的开始,
[电源管理]
泰克解读物联网如何推动电源效率、测试策略的创新
如果有人想开发“永动电池”,那么很可能电子工程师首先要把电源效率提高到远远高于当今的水平。但尽管人们在这一研究中做了大量投资,但这种电池还没有问世。相反,在现实世界中,设计人员必须尽一切可能来限制功耗,尤其是物联网(IoT),正如泰克科技公司应用工程师Seshank Malap所说,物联网正在设计及测试测量中引发一波创新潮。 功率管理是物联网设计关注的主要问题,准确描述设备功耗是物联网设计的基本要求。泰克科技十一种功率分析测量技术 ,为您提供优异的功率分析技术,帮助设计人员确定各种因素,最大限度降低能耗和优化电池续航时间。 ·测量宽动态范围的电流信号 ·确定超低深度休眠时的待机电流 ·测量输出电流和输入电流 ·
[测试测量]
电源效率提高方案
   如果设计者想在降压模式下使用凌特技术公司的LT1072开关式稳压器,并且需要处理高输入电压,则要获得最高效率就成为一个问题。例如,如果你需要在1.25W的较低功率电平下,将某设备从20V转换为5V,则该设备的静态电流(通常为6 mA)将成为电路功耗的一个重要部分。   相对而言,静态电流不受输入电压的影响,因此,IC功耗与其电源电压是成正比的。如果你的系统有可用的外部低电压电源,则可以用它做IC电源--LT1052可在低至2.6V的电压下工作。如果没有这种辅助电源,可以加一个转换电路,用IC输出使自己运行(图1)。增加这个功能可以将电源的总效率从77%提高到83%.   电源首次加电时,稳压器无输出:R8和D7使C6
[电源管理]
<font color='red'>电源效率</font>提高方案
LED日光灯 性能、电源、结构和寿命
  最近以来,LED日光灯成为最早进入室内的LED灯具之一,因为它相对于荧光灯来说具有很多优点。    一. 优点   相对于荧光灯来说,LED日光灯具有10大优点:   1. 发光效率高:   荧光灯的发光效率大约是55-80 lm/W(Philips公司T8荧光灯的发光效率为72lm/W),而LED的发光效率在100 lm/W以上,最近Cree公司的XLampXP-G的发光效率已经到130流明/W,而且以后还会不断提升。二者之差现在已经将近一倍。而以后有可能达到3倍以上。   2. 灯具效率高:   灯具的效率主要是指有效光效,因为荧光灯是360度发光的,而在反方向发出的光就没有什么用处。所
[电源管理]
瑞萨电子推出全新RX140 MCU
为家居与工业应用带来双倍性能和30%以上的电源效率提升 新型超低功耗RX140 MCU通过先进触控感应技术,实现更高噪声容限和感应精度 2021 年 9 月 29 日,日本东京讯 - 全球半导体解决方案供应商瑞萨电子集团,今日宣布,推出超低功耗32位RX140微控制器(MCU)产品群。作为入门级RX100系列的最新成员,RX140 MCU基于瑞萨强大的RXv2 CPU内核构建,具有卓越性能。其最高运行频率为48MHz,CoreMark评分达到204;同RX130 MCU产品群相比,可提供约两倍的处理性能,更将电源效率提升30%以上——当CPU处于工作状态时,电流低至56µA/MHz;在待机模式下低至0.25µA。这使
[单片机]
瑞萨电子推出全新RX140 MCU
采用Topswitch系列芯片的单片开关电源效率研究
引言   近20多年来,集成开关电源一直在沿着两个方向不断发展。第一是对开关电源的核心单元——控制电路实现集成化。第二个方向则是对中、小功率开关电源实现单片集成化。单片开关电源集成电路具有高集成度、高性价比、最简单的外围电路、最佳的性能指标、能构成高效率无工频变压器的隔离式开关电源等优点。目前已成为国际上开发中、小功率开关电源、精密开关电源、特种开关电源及电源模块的优选集成电路。目前,单片开关电源已形成了几十个系列、数百种产品。然而开关效率始终是一个众人关注的问题。本文就此问题提出了一点自己的看法。  1 Topswitch芯片在开关电源中的应用   70年代以来,电源产品掀起了一波高频化、小型化、模块化的浪
[电源管理]
Vishay新款25V N沟道功率MOSFET有效提升电源效率和功率密度
电子网消息,日前,Vishay Intertechnology, Inc.宣布,推出新的25V N沟道TrenchFET® Gen IV功率MOSFET---SiRA20DP,这颗器件在10V的最大导通电阻为业内最低,仅有0.58mΩ。Vishay SiliconixSiRA20DP具有最低的栅极电荷,导通电阻还不到0.6mΩ,使栅极电荷与导通电阻乘积优值系数(FOM)也达到最低,可使各种应用提高效率和功率密度。 今天发布的MOSFET采用6mm x 5mm PowerPAK®SO-8封装,是目前最大导通电阻小于0.6mΩ的两颗25V MOSFET之一。与同类器件相比,SiRA20DP的典型栅极电荷更低,只有61nC,FOM为
[半导体设计/制造]
采用LTC3866提高电流式开关电源效率的方法
特点 LTC3866 采用恒定频率峰值电流模式控制架构,从而可确保逐周期峰值电流限制和不同 电源 之间的均流。 该器件尤其适用于低压、大电流电源,因为其独特的架构能提高 电流 检测电路的信噪比。这允许LTC3866能以由DCR非常低(1mΩ或更低)的电感器产生小的采样信号工作,这在大电流电源中可提高电源效率。提高信噪比可最大限度地减小由开关噪声引起的抖动,而这有可能使信号产生讹误。凭借精心的PCB布局, LTC3866 可对低至0.2mΩ的DCR值采样,尽管在这种极端情况下,应该额外考虑PCB和焊料电阻。 如图1所示,LTC3866有两个正的采样引脚(SNSD+和SNSA+)以采集信号,并在内部对信号进行处理,这在响应低压采样信
[电源管理]
采用LTC3866提高电流式开关<font color='red'>电源效率</font>的方法
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved