最清晰透彻之RCC 电源变压器设计方法

最新更新时间:2011-09-12来源: 互联网关键字:电源变压器 手机看文章 扫描二维码
随时随地手机看文章
去年,出于一次偶然,写了三个变压器设计的文章,分别是反激正激半桥。没想到反响还不错,尤其以反激变压器那个文章为甚。现在,已经没做电源 RD 了,比原来空闲,那天有个初学者问我,说 RCC 电源变压器算的不准,原来是套用我写的那个反激式的算法,因此我想到,应该再写一点 RCC 电源变压器的设计方法,以使那些电源新手更快的掌握 RCC电源。毕竟 RCC 电源和反激电源还是有些不同的。

RCC 电路根据功率管不同,分为两种,一种是用三极管制作,另一种是用 MOS 管制做,电路稍有不同,但原理差不太多。我们知道,三极管是一个电流控制的电流源,即若其基极电流为 Ib,则其极电极电流即为此 IB 值乘以一个放大倍数。而 MOS 属电压控制型电流源,即允许流过的最大集电极电流是由 GS 极的电压值决定的,相应的,三极管做成的 RCC电路即是通过控制其基极电流来控制最大集电极电流,即原边峰值电流,来调节输出能量大小,即调节输出电压,而 MOS 管是通过调节 GS 极之间的电压,来控制其原边峰值电流。

 请看上图,是一个典型的用 MOS 管做的 RCC 电路。下面我根据自己的理解来分析一下此电路的工作过程。1.启动。当开启电源后,高压通过 RST,经过 MOS 的 GS 极,再经过 RS,注入基极电流,因为 MOS 的 GS 极之间,有结电容,因此 GS 极电压升高,GS 导通,RS 的上侧会对地产生一个电压,此电压通过 RF,给 Q1 基极注入电流。因 MOS正在导通中,所以 NS2 的同名端感兴出一个正电压来,这个电压通过 RL2,D2,RZCD,CZCD,再到 Q1 极电极,因 RS 给 Q1 已经注入基极电流,Q1 导通。

2.将 VG 电压拉下,MOS 关闭。MOS 关闭,电压反激, NS2 同名端电压被拉到 0,即为地电压,因 RCD 上端为地电压,所以此时 Q1 的极电极电压为负,便快速的给 MOS 的 GS 极的结电容放电。加速了 MOS 的关闭。同时反激能量通过 NS1,传给负载,于是次级建立起输出电压,次级控制电路亦开始起作用。当变压器储存能量放完后,NS2 两端电压消失,CO2 已经储能,其上端会有一个电压,此电压通过 NS2 绕组,RZCD,CZCD,Q1 集电极,使得 Q1 上电压上升,即又给 GS 加上一个电压。于是又开始起振。

3、以上便是 RCC 电路的启动过程,再说一下其稳压过程,在一定的输入电压下,一定的输出负载下,其光耦电流应该是一个恒定值,光敏三极管的上端是由电容 CO2 维持的一个恒定电压,此电压通过光敏三极管,RA,给 Q1 基极注入电流。Q1 的基极电流,决定了流过其极电极的电流。假如输入电压不变,MOS 在导通时候,RCD 上端(即NS2 同名端-),此时此点电压值为 VIN.NS2/NP+C02,只要输入电压值不变,导通时此点电压值即是这么多,不会变.而 Q1 上端的电压,是由流过 Q1 的电流决定,其电压等于 RCD 上端电压,减去 RL2,RCD,D2,RZCD,CZCD 的压降,当副边的负载变轻时候,流过光耦电流变大,即注入基极电流变大,极电极电流变大,以上四个元件的压降也变大,所以 Q1 是的电压变小,于是原边峰值电流变上,减小能量输入,达到电压稳定.当原边输入电压升高的时候,NS2 同名端电压升高,此时若光耦电流不变,则 Q1 的电压会上升,能量会增加,输出电压升高,此时光耦电流就会变大,进而形成一系列自动调节.从而调节原边峰值电流,使输出电压保持稳定.

通过以上分析,我们不难看出 RCC 电路与反激电路的区别,我归结如下.

1.RCC电路的频率是变化的,面反激电路的频率是固定的,当负载变重时,RCC 电路的频率变小,周期变长.

2.RCC 电路,始终工作在临界导通模式,其不会出现反激式电流的连续模式,即其原边电流始终都是一个三角波形,而不会出现梯形波,即其原边电流的波形如

3、RCC 电路调节电压输入的方式,就是通过控制原边的峰值电流来实现的,而不是占空比,其占空比是由原边输入电压和输出电压而定。 好了,了解了以上原理,我们就可以来设计这款 RCC 电源变压器。

设计一款 RCC 变压器,首先要知道的有 1.输入电压,比方说,宽电压 90V 至 264V 交流.2.输出规格,比方说 12V1A,3.所选的磁芯的横截面积.在此我选用了 EF20 磁芯,面积为 30 平方毫米.有了以上条件,根据以上电路,我即来设计此款 RCC 电路变压器.

1. 根据输入条件,确定输入最低直流电压,因为输入最低的交流电压是 90V,经过整流滤波,再考虑其电压波动,我还是可取输入最低直流电压 VIN 为 90V.

2. 根据开关管的类型,及其它条件,选取一个低压满载时的最低频率(即最大周期),不妨可取一个最长导通时间,并且自己设定占空比.这一步非常重要.在此,我选定此款电路最大周期为 17US,而导通时间为 8US,关断时间为 9US.

3. 计算原边峰值电流.首先估算一个效率,然后由输出功率和此估算效率得出输入功率,近而得出输入平均电流,比方说,此款输出 12W,估计效率为 0.8,则输入功率为 15W,则输入平均电流为 15/90,为 0.16A,然后根据占空比,算出峰值电流,公式为 IP=IAVG/D(1-0.5),而IP,IAVG,分别是峰值电流和平均值电流,此处平均电流为 0.16A,D 为 0.47,所以峰值电流为0.69A.根据此值,可设定 RS 值,一般的三极管,VBE 约为 0.6V,所以 RS=0.6/IP,此例约为0.86R,实际可选一个比此电阻略小的值,此电阻阻值便限制了最大的输出功率.综合以上两点,将详细图画下.

其实,一个 RCC 变压器的设定,其关键就是这个原边电流波形的设定.而此电流波形可用示波器观察到,将示波器高压端夹在 RS 上端即可.而根据原边平均值电流,计算原边峰值电流的公式。

关键字:电源变压器 编辑:冰封 引用地址:最清晰透彻之RCC 电源变压器设计方法

上一篇:单端反激开关电源变压器设计
下一篇:变压器绕制工艺解密

推荐阅读最新更新时间:2023-10-18 15:42

详解开关电源变压器的漏感
任何变压器都存在漏感,但开关变压器的漏感对 开关电源 性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均
[电源管理]
详解开关<font color='red'>电源变压器</font>的漏感
变压器分类及电源变压器的特性参数详细分析
变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 一、 分类 按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。 按防潮方式分类:开放式变压器、灌封式变压器、密封式变压器。 按铁芯或线圈结构分类:芯式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器。 按电源相数分类:单相变压器、三相变压器、多相变压器。 按用途分类:电源变压器、调压变压器、音
[电源管理]
如何减少电源变压器对音响功放电路的干扰
电源变压器 可通过磁场、电磁感应和电路对放大器形成干扰,是音响机器中最大的干扰源。所以,要处理好它的工作状态和应用环境,才能有效地避免由电源变压器产生的干扰,使放大器得到优良的音效。下面我将对此与大家做一讨论。   1、电源变压器除了为放大器供电外,还能够将放大器与电源偶合起来,使电网中的干扰源进入放大器,同时也将放大器产生的电压、电流变化反射到电网中。为了切断绕组间的静电场及容性偶合,隔离和共模抑制由此产生的干扰,避免将电网或电路中的共模电压偶合到次级或初级中去,对音响用电源变压器的绕组加法拉第静电屏蔽是很关键的。这种屏蔽可以是层间交替的铜箔,也可以是完整的合状结构,总之对绕组(尤其是对初级的绕组)包围得越多,共模抑制越好。
[模拟电子]
详解开关电源变压器的漏感
任何变压器都存在漏感,但开关变压器的漏感对 开关电源 性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均
[电源管理]
详解开关<font color='red'>电源变压器</font>的漏感
LED小贴士之驱动电源变压器检测的几种常用方法
1、通过观察 LED 驱动电源 变压器 的外型来检查其是否有明显异常现象。如线圈引线是否断裂、脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。 2、绝缘性测试。用万用表R×10k挡分别测量铁心与初级、初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值。万用表指针均应指在无穷大位置不动,否则,说明变压器绝缘性能不良。 3、线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 4、判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、
[电源管理]
30kHz高频开关电源变压器的设计
  在传统的高频变压器设计中,由于磁心材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化,高频化和高功率比已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积,提高电源输出功率比的关键因素。本文根据超微晶合金的优异电磁性能,通过示例介绍30kHz超微晶高频开关电源变压器的设计。 1变压器的性能指标 电路形式:半桥式开关电源变换器原理见图1: 工作频率f:30kHz 变换器输入电压Ui:DC300V 变换器输出电压U0:DC2100V 变换器输出电流Io:0.08A 整流电路:桥式整流 占空比D
[电源管理]
30kHz高频开关<font color='red'>电源变压器</font>的设计
高频电源变压器设计原则要求和程序
  1前言    电源 变压器 的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA为小功率,25VA以下为微功率。传送功率不同,电源变压器的设计也不一样,应当是不言而喻的。有人根据它的主要功能是功率传送,把英文名称Power Transformers译成功率变压器,在许多文献资料中仍然在使用。究竟是叫电源变压器,还是叫功率变压器好呢?有待于科技术语方面的权威机构来选择决定。   同一个英文名称PowerTransformer,还可译成电力变压器。电
[电源管理]
不用电源变压器的直流稳压器
随着小功率、小型化和轻量级电子产品的发展,用工频市电直接供电的无电源变压器离线式稳压电源迅速增长。这类与工频市电非隔离式稳压电源,尽管在电路上可能带有危险的电压,但由于体积小、线路简单。成本低,故在很多领域已得到较广泛的应用。 如图所示。该电路是采用廉价的双运放TAB2453和BUZ74型功率开关管MOSFET设计的无电源变压器稳压电源。其输入市电电压为Z20V+-30V,输出直流电压为4.8V,输出电流为110mA。市电电压经全桥整流、VD5隔离和R5降压、C1滤波及VD6稳压,为TAB2453A提供16V的电源。双运放IC1、IC2被接成比较器,调节RP的阻值,可调整ICl和IC2同相输人端上的基准电压值。R1与R3及R2
[电源管理]
不用<font color='red'>电源变压器</font>的直流稳压器
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved